

Water Resource Impacts of Solar Farms and appropriate BMPs

December 16th, 2022

Typical Solar Farm Site

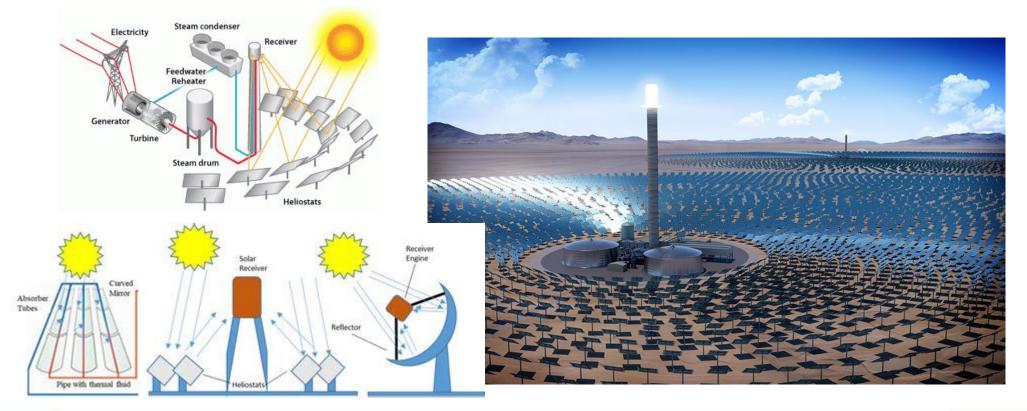
Types of Potential Impacts

Drainage and Erosion

- During construction
- Often solar farms are built on "lower quality" land where there can be difficulties maintaining permanent vegetation.
 - Soil amendments can improve vegetation survival.
 - Alternative slope protection can be installed (like gravel/rock protection)
- Spacing between panels/lines of panels should be adequate for the sunlight needs of the ground cover.
- Special treatments of "drip lines".
 - turf reinforcement matting
 - French drains.

Examples of Negative Impacts

TYPICAL INFILTRATION BERM (To reduce speed of water flow)


Types of Potential Impacts

Water Demand

- During operation to clean panels of dust and dirt
 - 0-33 gal per MWh
 - 0.3 acre-ft of water per acre (For comparison, average water use for irrigated crops is 1.5 acre-ft per acre)
 - Experiments with waterless cleaning technology using electrostatic repulsion
- concentrating solar-thermal power technologies
 - 0-33 gal per MWh (dry cooling); 90-345 gal/MWh (hybrid); 725-1000 gal/MWh (wet cooling)
 - Coal = 530 gal per MWh; Natural gas = 280 gal per MWh; Nuclear = 460 gal per MWh

Photovoltaic (PV) panels verses Concentrate Solar Radiation

Questions?

