Implementation of the Upper San Antonio River Watershed Protection Plan by incorporating and building upon stakeholder input to develop common goals and investment priorities for implementing green stormwater infrastructure (GSI).

GSI Master Plan

Subtask 5.2 - Upper San Antonio River Watershed Protection Plan Implementation

Michelle E. Garza

PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY

This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement (99614623) to the Texas Commission on Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.

Table of Contents

List of Acronyms
Subtask 5.2: Draft GSI Master Plan
HSPF Modeling for BMP Performance Evaluation5
A. Introduction5
B. Selected Sites for BMP Performance Evaluation Modeling5
C. General Modeling Considerations14
D. HSPF Bug Fixing and Code Upgrade16
E. USAR Subbasin 70 BMP Performance Evaluation Modeling19
F. Subbasin 150 BMP Performance Evaluation Modeling34
G. Subbasin 260 BMP Performance Evaluation Modeling43
H. Subbasin 270 BMP Performance Evaluation Modeling53
I. Subbasin 310 BMP Performance Evaluation Modeling61
J. Subbasin 330 BMP Performance Evaluation Modeling72
K. Subbasin 420 BMP Performance Evaluation Modeling83
L. Subbasin 560 BMP Performance Evaluation Modeling93
Subtask 5.1 - Triple Bottom Line (TBL) and Sustainable Return of Investment (SROI) Evaluation Report102
Subtask 4.3 - Stakeholder Engagement Report
Appendix A. Subtask 3.2 – Dataset of Potential GSI Projects
Appendix B. Modeling Documentation – Pre-Modeling Checklist
Appendix C. Additional Details on the HSPF Modeling for BMP Performance Evaluation
Appendix D. Subtask 3.2 - GSI Prioritization and Cost Report
Appendix E. Workshop 1: Terrell Heights Neighborhood Association (THNA) Board Meeting on February 28, 2021 on Site 150, City of San Antonio Right-Of-Way (ROW)
Appendix F. Terrell Heights ROW Signage253
Appendix G. Terrell Heights Neighborhood Survey Link, Image, and Questions/Responses256
Appendix H. Terrell Heights Community Meeting presentation and flyer held on April 6, 2021
Appendix I. Workshop 2: The City of San Antonio Public Works Department meeting invitation, agenda, and presentation held on March 9, 2021
Appendix J: Workshop 3: Brooks Development Authority meeting invitation, participation list, and presentation held on March 25, 2021
Appendix K. Workshop 4: City of San Antonio Park and Recreation Meeting on March 31, 2021
Appendix L. Workshop 5: San Antonio Housing Authority May 4, 2021, meeting details

List of Acronyms

BASINS	BETTER ASSESSMENT SCIENCE INTEGRATING POINT AND NON-POINT
	SOURCES
BMP	BEST MANAGEMENT PRACTICE
CAR	CORRECTIVE ACTION REPORT
CAP	CORRECTIVE ACTION PLAN
COC	CHAIN OF CUSTODY
CRP	CLEAN RIVERS PROGRAM
CWA	CLEAN WATER ACT
DEM	DIGITAL ELEVATION MODEL
EPA	ENVIRONMENTAL PROTECTION AGENCY
EWRE	ENVIRONMENTAL AND WATER RESOURCES ENGINEERING
S DRIVE	SAN ANTONIO RIVER AUTHORITY'S INTERNAL GENERAL PROJECT
	DRIVE/FILE SERVER
GIS	GEOGRAPHIC INFORMATION SYSTEM
GIS LIBRARY	GEOGRAPHIC INFORMATION SYSTEMS LIBRARY OF SHAPEFILE DATA
GSI	GREEN STORMWATER INFRASTRUCTURE
GSSHA	GRIDDED SURFACE/SUBSURFACE HYDROLOGIC ANALYSIS
HSG	HYDROLOGIC SOIL GROUP
HSPF	HYDROLOGIC SIMULATION PROGRAM – FORTRAN
IC	IMPERVIOUS COVER
LAN, INC.	LOCKWOOD, ANDREWS, AND NEWNAM, INC.
LRT	THE LOAD REDUCTION TOOL
LULC	LAND USE AND LAND USE
NPS	NONPOINT SOURCE
NRCS	NATURAL RESOURCES CONSERVATION SERVICE
PM	PROJECT MANAGER
QA	QUALITY ASSURANCE
QAO	QUALITY ASSURANCE OFFICER
QAPP	QUALITY ASSURANCE PROJECT PLAN
QAS	QUALITY ASSURANCE SPECIALIST
QMP	QUALITY MANAGEMENT PLAN
QPR	QUALITY PROGRESS REPORT
SARA	SAN ANTONIO RIVER AUTHORITY
SOP	STANDARD OPERATING PROCEDURE
SROI	SUSTAINABLE RETURN ON INVESTMENT
SWQM	SURFACE WATER QUALITY MONITORING
TBL	TRIPLE BOTTOM LINE
TBL-CBA	TRIPLE BOTTOM LINE-COST BENEFIT ANALYSIS
TCEQ	TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
TNRIS	TEXAS NATURAL RESOURCES INFORMATION SYSTEM
TUT	TIME SERIES UTILITY TOOL
USEPA	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
USGS	UNITED STATES GEOLOGICAL SURVEY
WPP	WATERSHED PROTECTION PLAN
WQV	WATER QUALITY VOLUME

Subtask 5.2: Draft GSI Master Plan

The Green Stormwater Infrastructure (GSI) Master Plan - Upper San Antonio River (USAR) Watershed Protection Plan Implementation (WPPI) involved developing a master plan for the use of GSI to manage stormwater quality within the watershed. This plan was funded in part by the U.S. Environmental Protection Agency (EPA) 319(h) Clean Water Act Grant through the Texas Commission on Environmental Quality (TCEQ), and the San Antonio River Authority (River Authority). A Hydrological Simulation Program – Fortran (HSPF) modeling effort was conducted to support GSI planning and performance evaluation. The plan incorporates and builds upon stakeholder input to develop common goals and investment priorities for implementing GSI. This project will help guide decisionmakers on where and how to apply limited resources in the upcoming years to maximize water quality benefits. It also integrates water quality with water quantity concerns, providing recommendations on best management practices (BMP) that can achieve both water quality and quantity goals.

The River Authority's watershed scale models have identified sub-basin areas with the highest potential pollutant loads. This project uses existing data and modeling tools to identify and prioritize sites within those areas that have the highest potential for GSI implementation effectiveness due to:

- The likelihood of the GSI site being a significant source of nonpoint source pollutants according to water quality data and geospatial data on soils, land use, etc.
- The suitability of each site for GSI implementation according to geospatial data on existing stormwater infrastructure, topography, impervious cover, etc.

• The availability of each site for GSI implementation; promising categories include public lands, capital improvement projects, city planning areas, and neighborhoods with supportive stakeholders such as homeowners' association partners.

The River Authority scored, and prioritized potential projects based on costs, water quality and other benefits, site restrictions, and stakeholder input. Lockwood, Andrews & Newman (LAN) supported the effort by developing a BMP Ranking matrix to help with scoring potential GSI sites. For the recommended sites, the San Antonio River Authority developed site-scale models, concept-level designs, and cost estimates. An existing sub-basin level HSPF model was revised to allow site-scale modeling of each GSI site and to support GSI performance evaluation. Using the modeling results, the River Authority estimated the pollutant load reductions these GSI projects would achieve across the watershed. In coordination with watershed stakeholders, the River Authority developed a GSI Master Plan that included a recommended schedule of implementation, address the stakeholder process, costs, funding considerations, and overall evaluation and prioritization process.

The GSI Master Plan also includes an evaluation of triple bottom line (TBL) benefits and sustainable return on investment (SROI). TBL evaluation monetizes the benefits and costs of activities in the three functional areas: social, environmental, economic. The TBL framework (Subtask 5.1, p.102) has been implemented by governments, policy makers, and economic development practitioners seeking to incorporate social and environmental benefits along with economic benefits into decision-making.

The approach developed in this GSI Master Plan can become a template for future implementation in other watersheds in the area and throughout the country.

The GSI Master Plan is based on the analysis of existing data and additional site-specific modeling to identify areas of significant loading and transport of nonpoint source pollutants, GSI opportunities (HSPF Modeling for BMP Performance Evaluation), costs of those opportunities, GSI prioritization (Subtask 3.2: GSI Prioritization and Cost Report), TBL and SROI report findings (Subtask 5.1: TBL and SROI Evaluation Report), and the stakeholder report (Subtask 4.3: Stakeholder Engagement Report). Task 3 deliverables (Documentation of Subcontracts, Dataset of Potential GSI Projects, Modeling Documentation, and GSI Prioritization and Cost Report) are added as appendices.

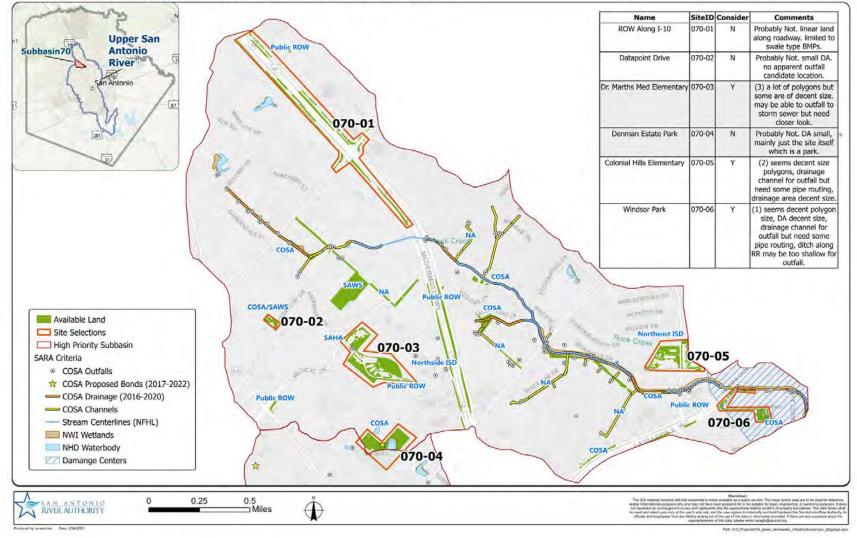
HSPF Modeling for BMP Performance Evaluation **A. Introduction**

A Best Management Practice (BMP) performance evaluation HSPF modeling was conducted under the Upper San Antonio River (USAR) Watershed Protection Plan Implementation – Green Stormwater Infrastructure Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP; SARA, 2020). This project was sponsored by the Texas Commission on Environmental Quality (TCEQ) and the San Antonio River Authority (RIVER AUTHORITY), and the HSPF modeling effort was conducted by Lockwood, Andrews & Newnam, Inc.

The effort involved developing conceptual green stormwater infrastructure (GSI) designs at eight selected subbasins within the USAR Watershed with one GSI site per subbasin. The previously developed and calibrated subbasin-scale HSPF model was refined to perform site-scale water quality (WQ) modeling at each of these eight GSI sites to evaluate BMP performance. The HSPF model was set up to simulate *E. coli* (EC) bacteria, water temperature, dissolved oxygen (DO), carbonaceous biochemical oxygen demand (CBOD), nitrate nitrogen, ammonia nitrogen, organic nitrogen, total phosphorus, orthophosphorus, and total suspended solids (TSS). The target constituent and the focus of the modeling effort is EC.

One of the eight GSI sites was selected for HSPF model calibration. The calibration involved comparing the HSPF results against those obtained from the corresponding two-dimensional (2D) Gridded Surface Subsurface Hydrologic Analysis (GSSHA) modeling using the same site, as well as the modeling of the BMP using the SARA Enhanced BMP Tool. Details of the calibration are documented in Attachment A entitled "Calibration of Site-Scale HSPF Model". The parameters for the pervious and impervious surfaces in the calibrated model were applied to the site-scale models of the remaining seven sites.

A continuous simulation of the site-scale HSPF models was performed for the period from 01/01/2007 to 12/31/2010. The outputs from the continuous simulation were used to estimate annual average load removal at each BMP site and the effectiveness of each modeled BMP type in reducing constituent loads. The target constituents are *E. coli* and nutrients. This technical memorandum documents the development of the BMP performance evaluation HSPF models and results.


B. Selected Sites for BMP Performance Evaluation Modeling

The BMP sites were selected by the River Authority using GIS and Google Earth imagery to assess the site conditions, LAN analysis on site conditions, LAN BMP Ranking Matrix outlined in Attachment C, and the San Antonio River Basin Low Impact Development Technical Guidance Manual. The chosen sites are listed in Table B-1 and include proposed BMPs for the site. Forty-nine sites in eight subbasins

were identified, as documented in the deliverable #10485 Dataset of Potential GSI Projects and are shown below in Exhibits B-1 through B-7 for USAR subbasins 70, 150, 260, 270, 310, 330, and 420, respectively. These potential sites were reviewed internally within the River Authority, with stakeholders in the Bexar Regional Watershed Management (BRWM) Watershed Technical Committee and others identified through the process, such as the San Antonio Housing Authority, for their perceived sustainable return on investment (SROI) and interest. The selected sites are listed in Table B-1 and include proposed GSI BMPs. The BMP site in Subbasin 560 (the Brooks Creek development) was selected in the calibration as documented in Attachment A, "Calibration of Site-Scale HSPF Model". The site was chosen due to the extensive work done with the community in the years leading up to the study and support for GSI by the Brooks Development Authority.

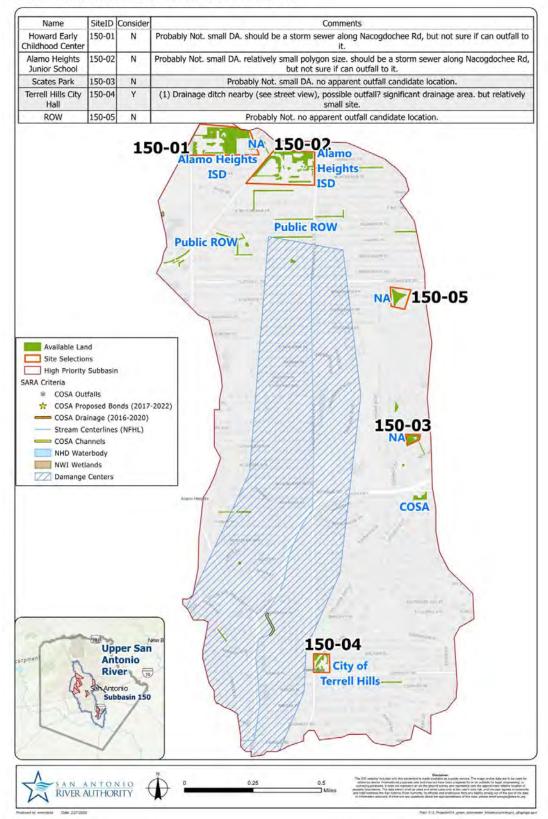

BMP Selection	Subbasin /Site ID	Name	Site Owner	BMP proposed (without drainage area review)	Object ID
1	070-06	Windsor Park	COSA- Parks	Extended detention basin/swale	6
2	150-05	Terrell Heights – Public ROW	COSA	Bioretention (or swale) with overflow bypass along the street (following current drainage pathway).	12
3	420-09	SAHA - Tampico Street Apt.	bioretention areas were chosen to tre		21
4	310-06	Lee's Creek	Lee's Creek COSA The COSA owned section, 7.4 acres. Swales or bioretention areas to polish runoff before it enters the creek.		29
5	270-06	General McMullen and Dartmouth (Rosedale Park)	ullenunderdrain, swale, or bioretention to tre street or parking runoff prior to enteringouthApache Creek.		37
6	260-04	Monterrey Park	Monterrey COSA- Divert street runoff into park a		42
7	330-01	SAHA - Pin Oak II Apartment	SAHA	Parking lot bioretention or swales between the apartments and parking lots.	49
8	560-06	Brooks – Public ROW	COSA	Swale or bioretention in median ROW	59

Table B-1 Selected BMP Sites

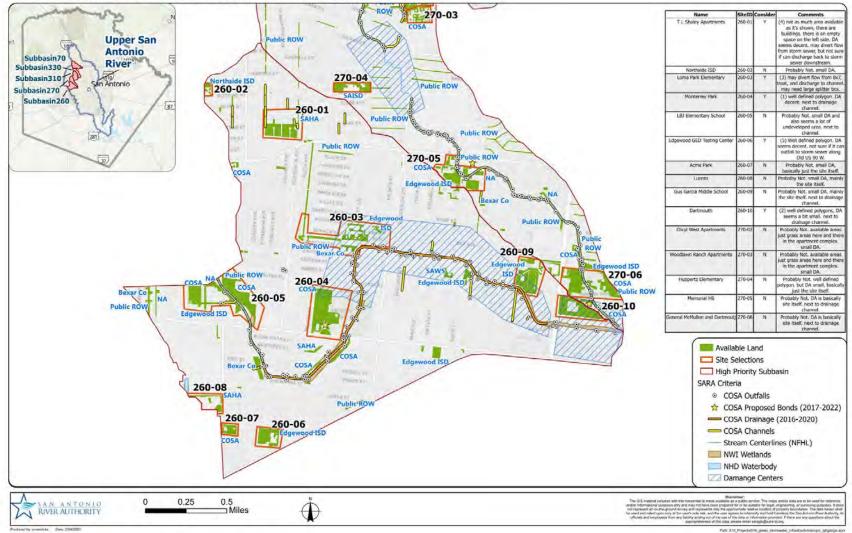

Green Stormwater Infrastructure Project: Subbasin 70 Site Selections

Exhibit B-1 Selected BMP Sites for USAR Subbasin 70

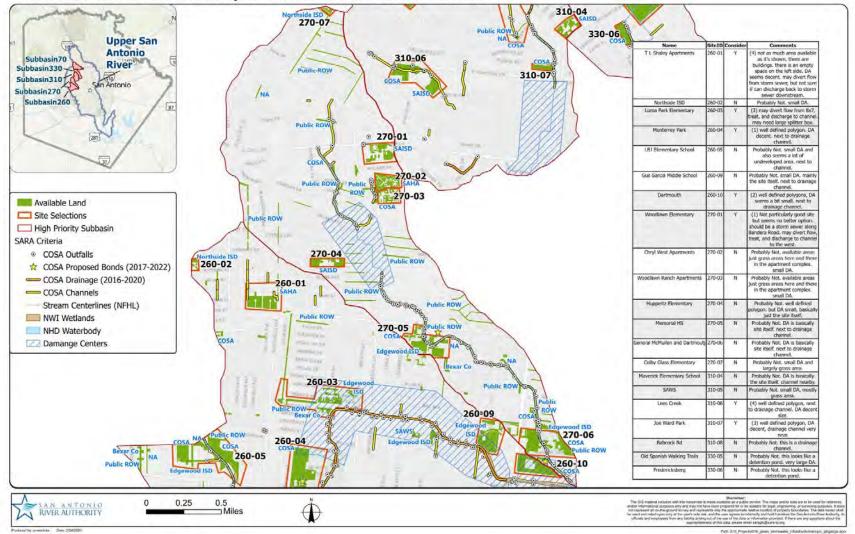

Green Stormwater Infrastructure: Subbasin 150

Exhibit B-2 Selected BMP Sites for USAR Subbasin 150

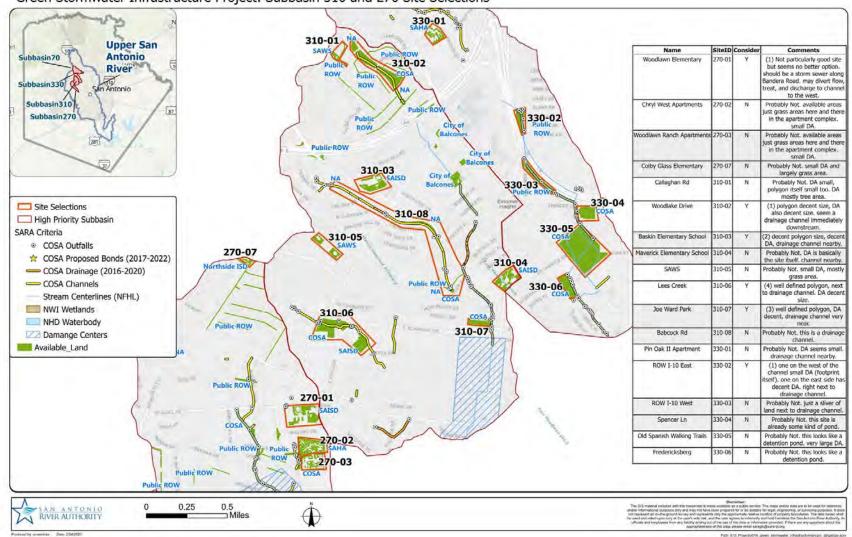

Green Stormwater Infrastructure Project: Subbasin 260 Site Selections

Exhibit B-3 Selected BMP Sites for USAR Subbasin 260

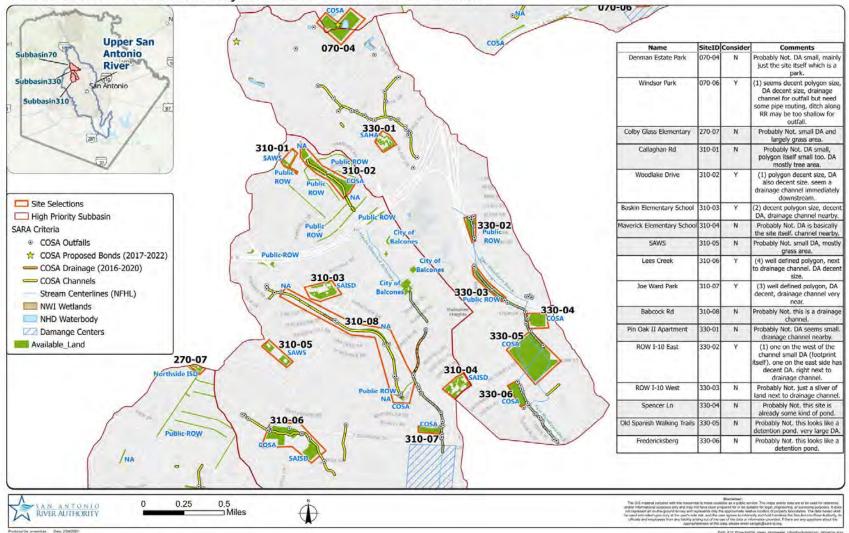

Green Stormwater Infrastructure Project: Subbasin 270 and 260 Site Selections

Exhibit B-4 Selected BMP Sites for USAR Subbasin 270

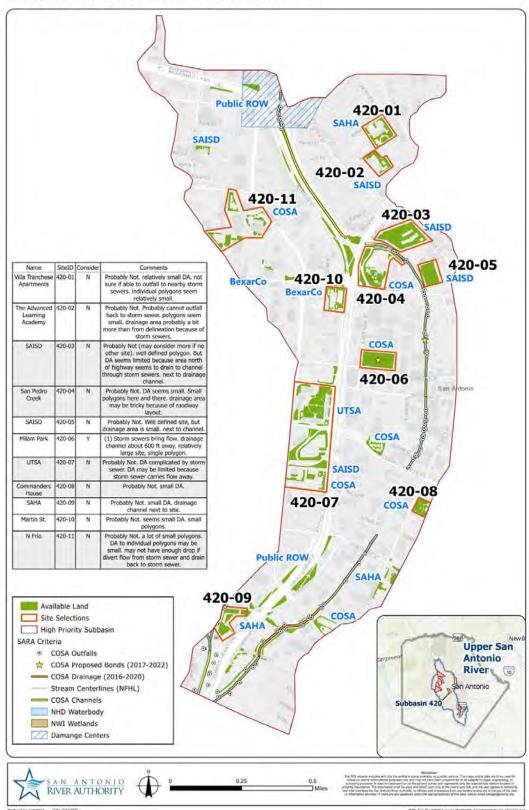

Green Stormwater Infrastructure Project: Subbasin 310 and 270 Site Selections

Exhibit B-5 Selected BMP Sites for USAR Subbasin 310

Green Stormwater Infrastructure Project: Subbasin 330 and 310 Site Selections

Exhibit B-6 Selected BMP Sites for USAR Subbasin 330

Green Stormwater Infrastructure: Subbasin 420

Exhibit B-7 Selected BMP Sites for USAR Subbasin 420

C. General Modeling Considerations

The River Authority and LAN discussed and determined to adopt the following general modeling considerations for determining the conceptual layouts of BMPs:

• To be consistent with the City of San Antonio Unified Development Code (UDC, City of San Antonio, 2020), the required water quality volume (WQV) to be captured and treated by a BMP is calculated as 60% of a 1.5-inch design daily rainfall applied to the impervious surface of the drainage area to the BMP, i.e.,

WQV = 1.5" x 60% x Impervious area

- The BMP types are selected from the BMPs included in the San Antonio River Basin Low Impact Development Technical Design Guidance Manual, Second Edition, May 2019 (SARA LID Manual, 2019).
- Large trees should be preserved.
- Existing park facilities should be preserved.
- The BMP footprint should stay outside of the effective 1% Annual Exceedance Probability (AEP) or 100-year floodplain.
- Only conceptual level of BMP layouts and dimensions are developed in this analysis.
- Detailed flow routing from the drainage area to a BMP or from the BMP outfall to a receiving stream is considered a detailed design element and not conducted in this conceptual level analysis.
- Decay coefficients needed for HSPF modeling of BMPs are obtained from the SARA Enhanced BMP Tool Database. Table C-1 list the decay coefficients and corresponding removal efficiencies for *E. coli* (EC) bacteria and nutrients, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively.

As a part of discussion with the River Authority, LAN conducted a review of historical rainfall records to locate an actual storm event that might represent the 1.5-inch design storm used for WQV calculation. Hourly rainfall data from 01/01/2005 to 03/10/2020 recorded at the San Antonio International Airport (NWS Gage TX12921) were obtained and reviewed, and eight storm events were found to have a total daily rainfall near 1.5 inches. As listed in Table C-2, the 03/20/2012 event is the only one that is exactly 1.500 in.

Exhibit C-1 shows the hourly timeseries of these eight storm events for examination of rainfall distribution through the day. The plots show that the 03/20/2012 event appears to be an appropriate one to use, although it only had a duration of 4 hours. LAN then suggested using the 03/20/2012 storm event if a design storm is needed for modeling BMP, and the River Authority approved the suggestion in May

2020. Note that per the QAPP, this BMP performance evaluation modeling used the 2007 to 2010 hourly rainfall for continuous simulation so the 1.5" design storm was only used for WQV calculations.

BMP	Parameter	BACT	ORGN	NH3N	NO3N	ORGP	ORTHOP
Bioswale	Removal	70.0%	18.6%	62.4%	51.0%	21.3%	21.3%
	efficiency						
	(%)						
	Decay coeff.	1.2048	0.2064	0.9792	0.7128	0.2400	0.2400
	(1/day)						
Extended	Removal	78.0%	2.1%	23.0%	23.2%	63.8%	63.8%
detention	efficiency						
	(%)						
	Decay coeff.	1.5144	0.0216	0.2616	0.2640	1.0152	1.0152
	(1/day)						
Bioretention	Removal	70.0%	18.6%	86.0%	76.0%	69.0%	69.0%
large	efficiency						
	(%)						
	Decay coeff.	1.2048	0.2064	1.9656	1.428	1.1712	1.1712
	(1/day)						
Bioretention	Removal	70.0%	18.6%	62.4%	51.0%	21.3%	21.3%
average	efficiency						
	(%)						
	Decay coeff.	1.2048	0.2064	0.9792	0.7128	0.2400	0.2400
	(1/day)						

Table C-1 Removal Efficiencies and Decay Coefficients

Table C-2 Historical Storm Events Matching 1.5 in/day Design Storm San Antonio International Airport, TX12921

(01/01/2005 - 03/10/2020)								
Date	Rainfall (in/day)							
10/10/2006	1.521							
03/30/2007	1.514							
04/15/2010	1.490							
01/09/2011	1.511							
03/20/2012	1.500							
06/09/2014	1.493							
05/17/2015	1.525							
10/31/2018	1.511							

02/10/2020

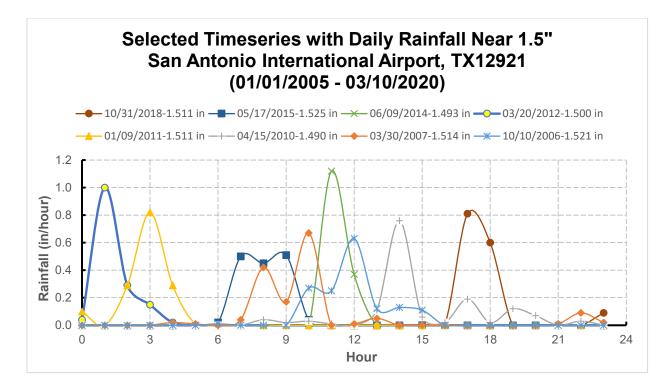


Exhibit C-1 Hourly Timeseries of Historical Storm Events Matching 1.5 in/day Design Storm

D. HSPF Bug Fixing and Code Upgrade

During the BMP Performance Evaluation modeling of a bioswale BMP in USAR Subbasin 70, as represented in Exhibit D-1, the River Authority /LAN team found and confirmed a bug in the HSPF program. The issue is illustrated in Exhibits D-2 and D-3 that show the outputs of RCHRES1 and RCHRES2, respectively, of the bioswale BMP. RCHRES is an operation unit in HSPF representing a water body such as a stream reach or a reservoir.

As shown in Exhibit D-1, the outflow from a Swale and Soil Media RCHRES is through an exit in the HSPF model while the down flow to the underdrain layer is through another exit. As shown in Exhibit D-2, the HSPF modeled sum of the bacteria outflows from the individual exits (ODQAL-EXIT1 and ODQAL-EXIT2) does not match the total bacteria outflow (TROQAL). The problem appears to be that when the volume (VOL) of the RCHRES is zero, the bacteria outflow (ODQAL-EXIT1) is zero even though the outflow (OVOL-1) is not zero. In Exhibit D-3, the HSPF modeled sums of the individual exits for the flow (OVOL-1 and OVOL-2) and the load (ODQAL-EXIT1 and ODQAL-EXIT2) are both zero. But these are inconsistent with the total outflow (ROVOL) and bacteria outflow (TROQAL) which are both non-zero.

- Total inflow (Q_{in}) to BMP
- Overflow (QOF)
- Ground infiltration (Q_{Infil})

Outflow through underdrain layer (Q_{Und}) , combines with bypass flow to become the total outflow (Q_{Out})

The bug was reported to the HSPF development team, RESPEC (formerly AQUA TERRA Consultants). They confirmed and fixed the bug, and then upgraded the code and issued a new HSPF plugin (HSPF12.5plugin.2020.07, HSPF is installed as a plug in to the EPA BASINS).

LAN worked with RESPEC during the bug fixing process and conducted testing of the revised HSPF code/plugin. The discovery, fixing, and testing of this HSPF bug was reported to TCEQ by the River Authority and included in a QAPP Amendment. TCEQ reviewed and approved the Amendment on 07/08/2020 to allow the BMP performance evaluation modeling to resume.

While the majority of the bug has been fixed, a minor issue remains when the outflow is near zero, as shown in Exhibit D-4. RESPEC determined that investigating and resolving this very small issue would take substantial effort because the values involved are so small The River Authority and LAN discussed the matter and determined that because this minor bug only occurs at very small flow volumes and has insignificant impact to the results, it would not be necessary to fix this small bug.

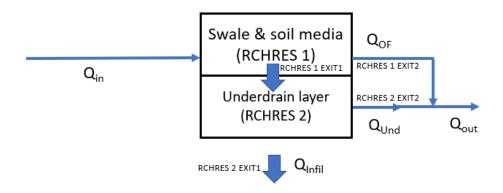


Exhibit D-1 HSPF Modeling of a Bioswale

Exhibit D-2 Outputs of RCHRES1

	А	В	С	D	E	F	G	Н	I.	J	К	L	М	Ν	0
1		Vol of water	Sum of	Vol of wat	Vol of outflow	Vol of outflow	Total vol	Total storage	Total inflow	Decay of	Outflow of	Outflow of	Totral outflow		
2		in RCHRES	inflow to	lost by	thru exit 1	thru exit 2	of outflow	of QUAL in	of QUAL	QUAL	QUAL thru	QUAL thru	of QUAL		
3			RCHRES	evap	(to underdrain	(overflow)		RCHRES			exit 1	exit 2			
4					layer)						(to underdrain	(overflow)			
5											layer)				
6	Time Series List														
7	History 1	from UpperS	from Uppe	from Uppe	from UpperSAR	from UpperSA	from Uppe	from UpperSAR_	from UpperSAR	from UpperSAR_	from UpperSAR_HSPF	from UpperSAR_HSPF	from UpperSAR_	HSPF10c.hb	n
8	Constituent	VOL	IVOL	VOLEV	OVOL-1	OVOL-2	ROVOL	E. COLI-RRQAL	E. COLI-TIQAL	E. COLI-DDQAL-	E. COLI-ODQAL-EXIT1	E. COLI-ODQAL-EXIT2	E. COLI-TROQAL		
9	Id	1	15	17	19	20	18	76	78	85	88	93	87		
10	Location	R:71	R:71	R:71	R:71	R:71	R:71	R:71	R:71	R:71	R:71	R:71	R:71		
11	Sum	3.376	0.91727	0.003229	0.7576	0.15643	0.91404	609,360	333,740	30,305	156,900	11,565	303,440		
12	1/1/2007 1:00	0	2.05E-05	0	0.00002052	0	2.05E-05	0	6.0667	0	0	0	6.0667		
5833	8/31/2007 14:00	0.010305	0.005744	3.9E-05	0.0028678	0	0.002868	9,060.80	3,462.20	466.46	2,651.20	0	2,651.20		
5834	8/31/2007 15:00	0.010075	0.002676	3.9E-05	0.0028678	0	0.002868	7,534	1,116	387.86	2,254.90	0	2,254.90		
5835	8/31/2007 16:00	0.0086149	0.001436	2.83E-05	0.0028678	0	0.002868	5,733.30	501.24	295.16	2,006.80	0	2,006.80		
5836	8/31/2007 17:00	0.0065834	0.000852	1.59E-05	0.0028678	0	0.002868	3,976.70	269.58	204.73	1,821.50	0	1,821.50		
5837	8/31/2007 18:00	0.0042572	0.000545	3.51E-06	0.0028678	0	0.002868	2,352.10	162.41	121.09	1,666	0	1,666		
5838	8/31/2007 19:00	0.0017587	0.000369	0	0.0028678	0	0.002868	934.33	105.81	0	1,523.50	0	1,523.50		
5839	8/31/2007 20:00	0	0.000262	0	0.0020205	0	0.002021	0	73.005	0	0	0	1,007.30		
5840	8/31/2007 21:00	0	0.000192	0	0.00019248	0	0.000192	0	52.637	0	0	0	52.637		
5841	8/31/2007 22:00	0	0.000146	0	0.00014579	0	0.000146	0	39.296	0	0	0	39.296		
5842	8/31/2007 23:00	0	0.000113	0	0.0001132	0	0.000113	0	30.175	0	0	0	30.175		
5843	39326	0	8.98E-05	0	0.00008976	0	8.98E-05	0	23.719	0	0	0	23.719		
5844															
5845			sun	n of OVOL-	1 and OVOL-2 =	0.91403	same as R	OVOL, ok.	su	m of ODQAL-EXIT	1 and ODQAL-EXIT2 =	168,465	not the same as	TROQAL???	
5846															
5847											E. COLI-ODQAL-EXIT1	only shows values wh	en VOL is not zer	0.	
E010															

Exhibit D-3 Outputs of RCHRES2

	А	В	с	D	E	F	G	н	1	J	к	L	м	N	(
1		Vol of wat	Sum of	Vol of wa	Vol of out	Vol of out	Total vol	Total storage	Total inflow	Decay of	Outflow of	Outflow of	Totral outflow		
2		in RCHRES	inflow to	lost by	thru exit 1	thru exit	of outflov	of QUAL in	of QUAL	QUAL	QUAL thru	QUAL thru	of QUAL		
3			RCHRES	evap	(to soil be	overflow)	RCHRES			exit 1	exit 2			
4											(to soil below)	(overflow)			
5															
6	Time Series List														
7	History 1	from Upp	from UpperS	from Upp	from Upp	from Upp	from Upp	from UpperSA	F from UpperSA	from UpperSA	from UpperSA	from UpperSA	from UpperSAR	_HSPF10c.	hbn
8	Constituent	VOL	IVOL	VOLEV	OVOL-1	OVOL-2	ROVOL	E. COLI-RRQAL	E. COLI-TIQAL	E. COLI-DDQAL	E. COLI-ODQAI	E. COLI-ODQAL	E. COLI-TROQAL		
9	Id	316	330	332	334	335	333	391	. 393	400	403	408	402		
10	Location	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72		
11	Sum	63.6	0.7576	0.071816	0	0	0.67199	1,015,600	156,900	52,284	0	0	100,490		
12	1/1/2007 1:00	2.05E-05	0.00002052	0	0	0	0	0	0	0	0	0	0		
13	1/1/2007 2:00	3.86E-05	0.00001809	0	0	0	0	0	0	0	0	0	0		
5836	8/31/2007 17:00	0.0138	0.0028678	1.59E-05	0	0	0.002852	6,584.90	1,821.50	339	0	0	1,430.90		
5837	8/31/2007 18:00	0.0138	0.0028678	3.51E-06	0	0	0.002864	6,498.20	1,666	334.54	0	0	1,418.20		
5838	8/31/2007 19:00	0.0138	0.0028678	0	0	0	0.002868	6,316.40	1,523.50	325.18	C	0	1,380.20		
5839	8/31/2007 20:00	0.0138	0.0020205	0	0	0	0.002021	5,239.90	0	269.76	0	0	806.7		
5840	8/31/2007 21:00	0.0138	0.00019248	0	0	0	0.000193	4,914.80	0	253.02	0	0	72.088		
5841	8/31/2007 22:00	0.0138	0.00014579	0	0	0	0.000146	4,625.30	0	238.12	0	0	51.38		
5842	8/31/2007 23:00	0.0138	0.0001132	0	0	0	0.000113	4,363.10	0	224.62	0	0	37.633		
5843	39326	0.0138	0.00008976	0	0	0	8.98E-05	4,122.60	0	212.24	0	0	28.195		
5844															
5845			sum of C	VOL-1 and	OVOL-2 =	0	???		sum of OE	QAL-EXIT1 and	ODQAL-EXIT2 =	0	???		
5846															
5847										IVOL of R:72 sa	me as OVOL-1 (of R:71.			
5848										TIQAL of R:72 s					
5849										But as shown,	there are times	when there			
5850										are inflow but	no associated E	Cload.			

Exhibit D-4 Outputs of RCHRES2 with Remaining Issue

	А	В	С	D	E	F	G	Н	l l	J	K	L	М	N
1	Time Series List													
2	History 1	from Uppe	from Upp	from UpperSAR	_HSPF10									
3	Constituent	VOL	IVOL	VOLEV	OVOL-1	OVOL-2	ROVOL	E. COLI-RRQAL	E. COLI-TIQAL	E. COLI-DDQAL	E. COLI-ODQAL	E. COLI-ODQAL	E. COLI-TROQA	L
4	Id	316	330	332	334	335	333	391	393	400	403	408	402	
5	Location	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	R:72	
6	Sum	237.89	1.7099	0.30642	0	1.3953	1.3953	10,856,000	878,670	524,450	0	353,210	354,220	
7	1/1/2007 1:00	2.05E-05	2.05E-05	0	0	0	0	6.0667	6.0667	0	0	0	0	
8	1/1/2007 2:00	3.86E-05	1.81E-05	0	0	0	0	11.405	5.3383	0	0	0	0	
9	1/1/2007 3:00	5.46E-05	1.6E-05	0	0	0	0	16.13	4.7253	0	0	0	0	
10	1/1/2007 4:00	6.89E-05	1.43E-05	0	0	0	0	20.336	4.2053	0	0	0	0	
7234	10/29/2007 4:00	8.3E-07	7E-08	0	0	0	0	1.6969	0.14356	0	0	0	0	
7235	10/29/2007 5:00	9E-07	6.90E-08	0	0	0	0	1.8385	0.14155	0	0	0	0	
7236	10/29/2007 6:00	9.7E-07	6.80E-08	0	0	0	0	1.9781	0.13958	0	0	0	0	
7237	10/29/2007 7:00	0	6.70E-08	1.03E-06	0	0	0	0	0.13765	0	0	0	2.1157	
7238	10/29/2007 8:00	6.60E-08	6.60E-08	0	0	0	0	0.13576	0.13576	0	0	0	0	
7239	10/29/2007 9:00	0	6.50E-08	1.3E-07	0	0	0	0	0.1339	0	0	0	0.26966	
7240	10/29/2007 10:00	6.40E-08	6.40E-08	0	0	0	0	0.13208	0.13208	0	0	0	0	
7241	10/29/2007 11:00	0	6.40E-08	1.3E-07	0	0	0	0	0.13029	0	0	0	0.26238	
7242	10/29/2007 12:00	6.30E-08	6.30E-08	0	0	0	0	0.12854	0.12854	0	0	0	0	
7243	10/29/2007 13:00	0	6.20E-08	1.2E-07	0	0	0	0	0.12682	0	0	0	0.25536	
7244	10/29/2007 14:00	6.10E-08	6.10E-08	0	0	0	0	0.12513	0.12513	0	0	0	0	
7245	10/29/2007 15:00	0	6E-08	1.2E-07	0	0	0	0	0.12347	0	0	0	0.24861	
7246	10/29/2007 16:00	5.90E-08	5.90E-08	0	0	0	0	0.12185	0.12185	0	0	0	0	
7247	10/29/2007 17:00	0	5.90E-08	1.2E-07	0	0	0	0	0.12025	0	0	0	0.2421	
7248	10/29/2007 18:00	5.80E-08	5.80E-08	0	0	0	0	0.11868	0.11868	0	0	0	0	
7249	10/29/2007 19:00	1.2E-07	5.70E-08	0	0	0	0	0.23583	0.11714	0	0	0	0	
7250	10/29/2007 20:00	1.7E-07	5.60E-08	0	0	0	0	0.35146	0.11563	0	0	0	0	

E. USAR Subbasin 70 BMP Performance Evaluation Modeling

Site Description and Land Uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 70 is Windsor Park as shown in Exhibit E-1. The park is located between the Union Pacific Railroad and Windham Drive. Rock Creek is located at about 500 ft to the north of the park flowing in a west-east direction. Existing facilities in the park include a playscape, a tennis court, and a soccer field with goal posts. There is substantial open space in the park available for placing stormwater BMPs.

The drainage area to Windsor Park was delineated using Arc Hydro and the DEM data provided by the River Authority and determined to be 20.02 acres. As shown in Exhibit E-2, the land use in the delineated drainage area includes mostly single-family residential, some transportation, and some meadow, and stormwater runoff from the area is draining toward Windsor Park from the west.

The land uses and their corresponding impervious cover (IC) percentages from the 2017 land use data provided by the River Authority are used to determine the pervious and impervious areas within the delineated drainage area, as listed in Table E-1.

Table E-1 Eand Oses of Subbashi 70 Bivir Site									
Land use	IC%	Pervious	Impervious	Total					
		Area	Area	Area					
		(ac)	(ac)	(ac)					

Table E-1 Land Uses of Subbasin 70 BMP Site

Undeveloped Meadow	0	1.96	0	1.96
Residential High Density	65	4.69	8.71	13.40
Transportation	90	0.47	4.19	4.66
TOTAL	64.4	7.12	12.90	20.02

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQV for the selected BMP site is: $1.5^{"}/12 \ge 0.6 \ge 1.2 = 1.16$ ac-ft

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117).

Following evaluation of site conditions including floodplain boundary and discussion with the River Authority, the layout of two conceptual bioswales (North and South, or N and S) and two extended detention ponds (N and S) were outlined as shown in Exhibit E-3. These BMPs were assumed to function in parallel instead of in upstream-downstream series to allow independent evaluation of the performance of each BMP type and location. Given the storage volumes of the two extended detention ponds, the required WQV would be met. Thus, the bioswales would provide additional volumes than the required WQV and therefore additional treatment for the delineated drainage area.

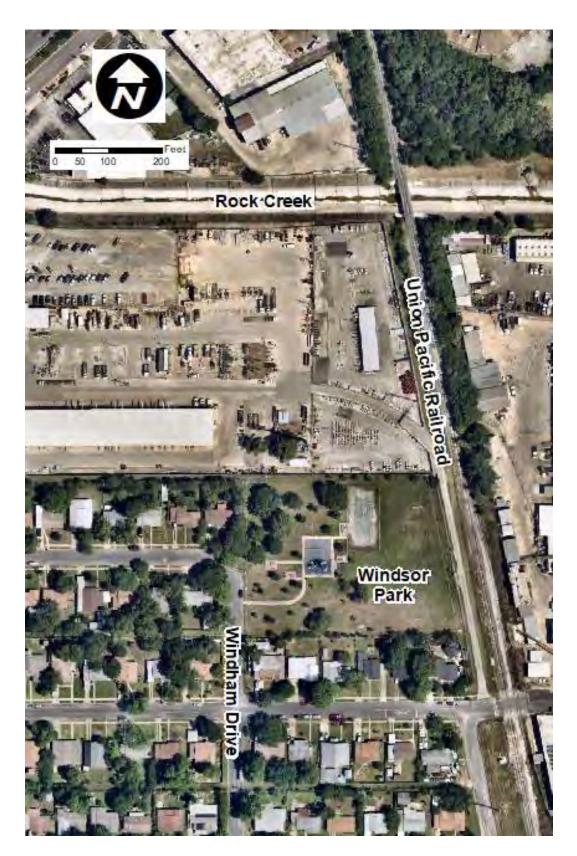


Exhibit E-1 Selected Site for Subbasin 70 – Windsor Park

Exhibit E-2 Drainage Area of Subbasin 70 Site

Exhibit E-3 Proposed BMPs on Subbasin 70 Site

Sizing BMPs

Based on site condition and available footprint, the lengths of Bioswale N and Bioswale S are outlined to be 200 and 165 ft, respectively. In the BMP Tool Database, a unit of bioswale is 1,120 ft long that can serve 2.0 acres of drainage area. Thus, Bioswale N and Bioswale S were assumed to serve 0.36 ac (200/1,120 x 2.0) and 0.29 ac (165/1,120 x 2.0), respectively, with a total of 0.65 ac.

With a total drainage area of 20.02 ac and the two bioswales treating 0.65 ac, the two extended detention ponds would treat at least 19.37 ac. This area was split between the two ponds based on the pond volumes listed in Table E-2. Note that, with larger available BMP footprint than required, the total pond volume is 1.384 ac-ft, which is more than the required water quality volume of 1.16 ac-ft. The areas for the various land uses are allocated to the four BMPs as shown in Table E-3 where per and imp indicate pervious and impervious areas, respectively. The WQV and surface area of each BMP is shown in Table E-4.

	8								
	BMPs	Pond volume	Drainage area						
		(ac-ft)	(ac)						
E	xtended detention N	0.249	3.48						
E	xtended detention S	1.135	15.89						
	TOTAL	1.384	19.37						

Table E-2 Extended Detention Pond Volumes and Drainage Areas for Subbasin 70

Table E-3	Table E-3 Drainage Areas and Land Uses for Selected BMP in Subbasin 70									
Land use	Bioswale N	Bioswale S	Ex det N	Ex det S	Total					
Undeveloped	0.0353	0.0284	0.3414	1.5582	1.96					
meadow (per)										
Residential high	0.0843	0.0679	0.8154	3.7211	4.69					
density (per)										
Residential high	0.1566	0.1261	1.5142	6.9106	8.71					
density (imp)										
Transportation (per)	0.0084	0.0067	0.0810	0.3697	0.47					
Transportation (imp)	0.0754	0.0607	0.7290	3.3269	4.19					
Total	0.36	0.29	3.48	15.89	20.02					

Table E-4 Water Quality Volume and Surface Area of Subbasin 70 BMP Site

BMP	WQV (ac-ft)	Surface area (ac)
Bioswale N	0.0628	0.0436
Bioswale S	0.0518	0.0360
Extended detention N	0.2487	0.1115
Extended detention S	1.1350	0.4060
Total	1.4983	0.5971
Required	1.1610	N/A

Note: Surface area is the area at the water level of the WQV.

Modeling Bioswales in HSPF

Exhibit D-1 illustrates how a bioswale is set up in HSPF. Each bioswale includes two components each represented by a HSPF RCHRES. The upper component includes swale vegetation and soil media. The lower component is an underdrain layer. Stormwater runoff entering a bioswale will flow through the soil media into an underdrain layer. Higher flow would overflow the swale. Based on the SSURGO database, the soil at this BMP site is classified as hydrologic soil group (HSG) D, which has a very low infiltration capacity. As a result, no infiltration is assumed to enter the soil below the underdrain layer. When the underdrain layer is full, treated runoff would leave the underdrain and outflow downstream. The total outflow is the sum of the overflow from the swale and soil media and the outflow from the underdrain layer.

Using data listed in Table B-2-1 of the River Authority's LID Manual, the soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4. Page B-158 of the River Authority's LID Manual requires that a bioswale be designed to safely convey the 25-year storm event, and Page B-40 requires that flow velocity generally not exceed 1 ft/sec in mulched swales or 3 ft/sec in grassed swales. Calculations listed in Table E-5 show that the proposed bioswales meet these requirements.

Hydraulic Parameters	Bioswale N	Bioswale S
Length (ft)	200	165
Drainage area (ac)	0.36	0.29
Bottom width (ft)	5	5
Side slope (xH:1V)	3	3
Depth of swale (ft)	0.75	0.75
Manning n	0.2	0.2
Longitudinal slope	0.02	0.02
25-yr rainfall intensity (in/hr)	11	11
Runoff coefficient	0.67	0.67
25-yr flow (cfs)	2.65	2.14
Flow depth (ft)	0.61 < 0.75 OK	0.54 < 0.75 OK
Cross section area (ft ²)	4.17	3.57
Wetted perimeter (ft)	8.86	8.42
Hydraulic radius (ft)	0.47	0.42
Velocity (ft/s)	0.64 < 1 OK	0.59 < 1 OK

Table E-5 Hydraulic Parameters of Bioswales in USAR Subbasin 70

Modeling Extended Detention Ponds in HSPF

The extended detention ponds are required to have a 3:1 side slope. Extended Detention Pond N and S are assumed to have a water depth of 3.5 and 4.0 ft, respectively, when capturing the proposed WQV of 0.249 and 1.135 ac-ft, respectively. The pond is modeled as a RCHRES in HSPF as illustrated in Exhibit E-4, where flow entering the Extended Detention Basin is (Q_{in}) , overflow is (Q_{OF}) , and flow through the orfice

is (Qorfice), and the overflow and flow through leave the system in (Q_{Out}). High flow is released via a weir at the top of the pond. The pond volume is drained via an orifice outlet.

The outflow in a FTABLE, i.e. the rating table of a HSPF RCHRES that relates water depth to surface area, total volume, and outflow, was set up per Table B-8-1 in the River Authority's LID Manual. That is, complete drawdown of the WQV would occur within 48 hours but no more than 50% of the WQV would drain from the pond within the first 24 hours. It is assumed that the actual design of the outlet system will be done in the detailed design.

Exhibit E-4 Extended Detention

Development of HSPF Model Files

The original USAR subbasin-scale watershed model with simulation period from 2007 to 2010 was modified by applying model parameters from the site-scale model calibration effort and adding selected BMPs to be modeled. For the Subbasin 70 site, the HSPF model modifications are summarized in detailed steps in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table E-6 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for each of the four Subbasin 70 BMP layouts. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

	Inf	low	Out	flow
BMP	Geomean (#/dL)	Flow-weighted Geomean (#/dL)	Geomean (#/dL)	Flow-weighted Geomean (#/dL)
Bioswale N	72,387	17,981	9,855	13,819
Bioswale S	72,394	17,981	9,609	13,725

Table E-6 EC Concentrations of Subbasin 70 BMP Layouts Over 2007-2010

Extended detention N	72,383	17,981	72,668	12,848
Extended detention S	72,384	17,982	71,098	13,001
Overall	72,384	17,982	71,014	13,044

Table E-6 shows that outflow EC geomeans of the bioswales are lower than the inflow, and Extended Detention S BMP also has a slightly lower outflow geomean than the inflow. However, for Extended Detention N, the outflow geomean is slightly higher than the inflow. This is possible because the ponds can hold higher concentration stormwater and release the water slowly during the dry weather after storm events when the flow is smaller. That is, a large pond can extend the effects of higher EC loads in stormwater after each storm event resulting in the overall geomean to be slightly higher than the inflow. However, it is critical to note that the outflow flow-weighted geomeans are all lower than the inflow reflecting the reduction in EC loads during storm events.

Tables E-7 to E-10 list the model output annual inflows and outflows of each of the four BMP layouts in Subbasin 70 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed by each BMP and the corresponding removal percentages (or BMP performance) are also listed. Table E-11 shows the same set of information but for the 4-year total.

The constituent removal percentages were calculated in two approaches – based on individual input to a BMP and based on the total input coming from the drainage area. The loads removed and removal percentages calculated are summarized in Table E-12 for easier comparison.

For the approach based on individual input to a BMP, the percent removal represents only the performance of the BMP in removing only the flow and loads that can enter the BMP. While this is the standard approach when evaluating BMP performance, it can be misleading when comparing BMPs because the total input to BMPs are not the same. For example, Table E-12 shows that bioswales have a higher percentage removal of EC (4-year total about 63%) than the extended detention ponds (4-year total about 30%) if comparing these two BMP types using the percent removal based on individual BMP inflow.

In addition to the difference in decay coefficients between BMP types, the modeling results are also affected by the inflows to a bioswale BMP being detained longer resulting in a longer time for decay to occur. In particular, the underdrain layer was modeled to fill up and overflow and, when the water level was below the top of the underdrain layer, the water was retained in the underdrain layer and decay could continue for a long time resulting in more load removal. Note that 2008 was a dry year, and the inflows were smaller and more likely to be retained in the bioswales. Therefore, the removal percentages are higher in 2008 than the other years.

On the other hand, as listed in Table E-12 under the "Load Removed" columns, a bioswale could remove about $4x10^{11}$ EC load over the 2007 to 2010 period while an extended detention pond could remove from $2x10^{12}$ to almost 10^{13} of EC load. Thus, when comparing BMP types, it would be beneficial to also evaluate the percent load removal based on the total input from the drainage area. Because bioswales are sized to only treat only a small portion of the total drainage area, the removal percentages based on total

inputs are much smaller (about 1%) than those of the detention ponds. The overall results are dominated by the performance of the extended detention ponds (from 5.4 to 23.7%).

Thus, a complete BMP performance evaluation should not only compare percent load removal data, but also the size, cost, footprint area, etc. associated with the BMPs. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

FLOW					c 1 .	0 (1	<u> </u>	5 1	0.10	-	N/ 1	o/
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component	((+)	underdrain	((+)	storage	storage	from BMP	removed	(based on	(based on
	Currele i Mandie	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
ioswale N	Swale + Media Underdrain	0.5745	0.5745	0.0017 0.0954	0.5550	0.0178	0.0000	0.0000	0.0178	0.0972	16.9%	0.3%
Bioswale S	Swale + Media	0.4626	0.3550	0.0934	0.4485	0.4395	0.0000	0.0000	0.4395	0.0799	17.3%	0.3%
SIOSWale 5	Underdrain	0.4626	0.4626	0.0014	0.4465	0.3701	0.0000	0.0000	0.3701	0.0799	17.5%	0.5%
Extended detention N	Underdram	5.5550	0.4465	0.0784		0.3701	0.0000	0.0000	5.5189	0.0361	0.6%	0.1%
Extended detention N		25.3519		0.1413			0.0000	0.0000	25.2107	0.1413	0.6%	0.1%
		31.9441		0.3545			0.0000	0.0000	1	0.3544	0.0%	1.1%
Total	1	51.9441		0.3545			0.0000	0.0000	31.5896	0.5544		1.170
	nnual rainfall (in)	46.238										
	rainage area (ac)	20.02										
	erall runoff coeff	0.414										
010		0.414										
ВАСТ												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
5	components	to BMP	component	beeu,	underdrain	overnou	storage	storage	from BMP	removed	(based on	(based or
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
Bioswale N	Swale + Media	263,776	263,776	4,946	257,510	1,320	0	0	1,320	159,644	60.5%	1.1%
SIGSWAIC IV	Underdrain	205,770	257,510	154,698	257,510	102,812	0	0	102,812	133,044	00.570	1.1/0
Bioswale S	Swale + Media	212,391	212,391	3,628	207,787	976	0	0	976	129,538	61.0%	0.9%
Sloswale S	Underdrain	212,551	207,787	125,909	201,101	81,877	0	0	81,877	125,550	01.0/0	0.576
Extended detention N	Shacraralli	2,550,473	237,707	750,332		51,077	0	0	1,800,141	750,333	29.4%	5.1%
Extended detention N		11,639,892		3,324,641			0	0	8,315,250	3,324,642	29.4%	22.7%
Total	1	14,666,532		4,364,155			0	0	10,302,375	4,364,157	_0.0/0	29.8%
i otai	1 1	14,000,552	1	4,304,133			U	U	10,302,375	4,304,157	I	29.8%
PCN												
DRGN	Commont-	Inflor	Inflow to	Deca	Elou: +-	Overflesse	C+	End	0+fl.c	Lood	% roma	%
BMP	Components	Inflow to RMP	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow from RMD	Load	% removed	% remove
		to BMP	component		underdrain	<i>/</i> // \	storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioswale N	Swale + Media	1.0870	1.0870	0.0027	1.0806	0.0037	0.0000	0.0000	0.0037	0.4765	43.8%	0.8%
	Underdrain		1.0806	0.4739		0.6067	0.0000	0.0000	0.6067			
Bioswale S	Swale + Media	0.8752	0.8752	0.0019	0.8706	0.0027	0.0000	0.0000	0.0027	0.3899	44.5%	0.6%
	Underdrain		0.8706	0.3880		0.4826	0.0000	0.0000	0.4826			
Extended detention N		10.5100		0.0625			0.0000	0.0000	10.4475	0.0625	0.6%	0.1%
Extended detention S		47.9654		0.2728			0.0000	0.0000	47.6927	0.2728	0.6%	0.5%
Total		60.4376		1.2017			0.0000	0.0000	59.2359	1.2017		2.0%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale N	Swale + Media	0.5335	0.5335	0.0229	0.4988	0.0119	0.0000	0.0000	0.0119	0.2879	54.0%	1.0%
	Underdrain		0.4988	0.2650		0.2338	0.0000	0.0000	0.2338			
Bioswale S	Swale + Media	0.4296	0.4296	0.0180	0.4033	0.0083	0.0000	0.0000	0.0083	0.2342	54.5%	0.8%
	Underdrain		0.4033	0.2162		0.1870	0.0000	0.0000	0.1870			
Extended detention N		5.1585		0.4455			0.0000	0.0000	4.7130	0.4454	8.6%	1.5%
Extended detention S		23.5422		1.9740			0.0000	0.0000	21.5682	1.9740	8.4%	6.7%
Total		29.6637		2.9416			0.0000	0.0000	26.7222	2.9416		9.9%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioswale N	Swale + Media	0.8450	0.8450	0.0195	0.8137	0.0118	0.0000	0.0000	0.0118	0.4444	52.6%	0.9%
	Underdrain		0.8137	0.4249		0.3888	0.0000	0.0000	0.3888	1		
Bioswale S	Swale + Media	0.6804	0.6804	0.0151	0.6570	0.0083	0.0000	0.0000	0.0083	0.3618	53.2%	0.8%
	Underdrain		0.6570	0.3467		0.3103	0.0000	0.0000	0.3103	1		
Extended detention N		8.1702		0.6669			0.0000	0.0000	7.5033	0.6669	8.2%	1.4%
Extended detention S		37.2873		2.9438			0.0000	0.0000	34.3435	2.9438	7.9%	6.3%
Total	1 1	46.9829		4.4169			0.0000	0.0000	42.5660	4.4169		9.4%
	11	.0.3023	1				0.0000	5.5000	12.5000		I	5.470
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIE	components	to BMP	component	Decay	underdrain	Overnow	storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbc)	(lbs)	(lbc)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioswale N	Swale + Media	0.3489	(IDS) 0.3489	(lbs) 0.0010	(IDS) 0.3467	(lbs) 0.0011	0.0000	(IDS) 0.0000	(IDS) 0.0011	(IDS) 0.1567	44.9%	0.8%
	Underdrain	0.3463	0.3489	0.1557	0.3407	0.1910	0.0000	0.0000	0.1910	0.1307	44.9%	0.070
Bioswale S	Swale + Media	0.2809	0.3467	0.1557	0.2794	0.1910	0.0000	0.0000	0.1910	0.1281	45.6%	0.7%
Sissware S	Underdrain	0.2003	0.2809	0.1273	0.2734	0.1520		0.0000	0.1520	0.1201	-5.0%	0.770
Extended detention N	onuerurain	3.3734	0.2794	0.1273		0.1520	0.0000	0.0000	2.6948	0.6786	20.1%	3.5%
Extended detention N		3.3734		2.9927			0.0000	0.0000		2.9928		3.5%
	-								12.4028		19.4%	
Total	1	19.3987		3.9561			0.0000	0.0000	15.4426	3.9561		20.4%
ORTHOP	1.0			·	-		<u> </u>		0.10			o/
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	0.1418	0.1418	0.0005	0.1404	0.0009	0.0000	0.0000	0.0009	0.0644	45.4%	0.8%
	Underdrain		0.1404	0.0638		0.0766	0.0000	0.0000	0.0766			
Bioswale S	Swale + Media	0.1142	0.1142	0.0004	0.1131	0.0006	0.0000	0.0000	0.0006	0.0526	46.1%	0.7%
	Underdrain		0.1131	0.0522		0.0609	0.0000	0.0000	0.0609			
	1 1	1.3709		0.2756			0.0000	0.0000	1.0953	0.2756	20.1%	3.5%
Extended detention N Extended detention S		6.2565		1.2153			0.0000	0.0000	5.0412	1.2153	19.4%	15.4%

Table E-7 2007 Flows and Loads of Subbasin 70 BMP Performance Evaluation Modeling

Bioswale N Bioswale S Bioswale S Bioswale S Bioswale S Bioswale S Bioswale S Bioswale A Bioswale A Bioswale N Bioswale N Bioswale N Bioswale N Bioswale S Bioswale N Bioswale S Bioswale N Bioswale S Bioswale N Bioswale N Bioswale N Bioswale N Bioswale S Bioswale N Bioswale N Bioswale S Bioswale N Bioswale S Bioswale N Bioswale S Bioswale N Bioswale S Bioswale S Bioswale N Bioswale S	le + Media erdrain rainfall (in) je area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media	to BMP (ac-ft) fedia 0.1129 in - fedia 0.0909 in - 1.0915 4.9813 6.2766 - all (in) 14.00 a (ac) 20.02 coeff 0.268 ents Inflow to BMP - (10^6) - fedia 81,522 in - 978,941 - 4,467,712 - 5,629,419 - ents Inflow to BMP (lbs) (lbs) 0.4264 in -	2 3 Inflow to component (10^6) 101,244 101,244 81,522 81,522 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Evaporation (ac-ft) 0.0001 0.0658 0.0000 0.0540 0.0082 0.0327 0.1608 Decay (10^6) 0 81,152 0 81,152 0 65,044 227,776 993,101 1,367,072	Flow to underdrain (ac-ft) 0.1128 0.0909 0.0909 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	Overflow (ac-ft) 0.0000 0.0471 0.0000 0.0369 0.0369 0.0369 0.0369 0.0369 0.0092 0 16,477	Start storage (ac-ft) 0.00000 0.000000	End storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Outflow from BMP (ac-ft) 0.0000 0.0471 0.0000 0.0369 1.0832 4.9486 6.1158 Outflow from BMP (10^6) 0	Flow removed (ac-ft) 0.0658 0.00540 0.0082 0.0327 0.1608 Load removed (10^6) 91152	% removed (based on BMP inflow) 58.3% 0.8% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7%	% removed (based on 1.0% 0.9% 0.1% 0.5% 2.6% % removed (based on total inflow
ioswale S Vinderd V	erdrain le + Media erdrain rainfall (in) ge area (ac) unoff coeff mponents le + Media erdrain le + Media	(ac-ft) fedia 0.1129 in .0909 in 1.0915 4.9813 6.2766 all (in) 14.06 al (ac) 20.02 coeff 0.268 ents Inflow to BMP (10^6) fedia 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) fedia 0.4264 in	(ac-ft) 0.1129 0.1128 0.0909 0.0910 0.091	0.0001 0.0658 0.0000 0.0540 0.0327 0.1608 Decay (10^6) 0 81,152 0 81,152 0 65,044 227,776 993,101	(ac-ft) 0.1128 0.0909 Flow to underdrain (10^6) 101,244	0.0000 0.0471 0.0000 0.0369 0.0369 0.0369 0.0369 0.0369 0.0009 0.00092 0.0000	(ac-ft) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (10^6) 0	(ac-ft) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (10^6) 0	(ac-ft) 0.0000 0.0471 0.0000 1.0832 4.9486 6.1158 Outflow from BMP (10^6)	(ac-ft) 0.0658 0.0540 0.0082 0.0327 0.1608 Load removed (10^6)	BMP inflow) 58.3% 59.4% 0.8% 0.7% 	total inflow 1.0% 0.9% 0.1% 0.5% 2.6%
ioswale S Swale 4 Underd xtended detention N xtended detention S otal Annual rai drainage a overall runo Annual rai drainage a overall runo Act Swale 4 Underd ioswale N Swale 4 Underd ioswale S Swale 4 Underd ioswale S Sw	erdrain le + Media erdrain rainfall (in) ge area (ac) unoff coeff mponents le + Media erdrain le + Media	tedia 0.1129 in 0.0909 in 1.0915 4.9813 6.2766 all (in) 14.00 a (ac) 20.02 coeff 0.268 ents Inflow to BMP (10°6) tedia 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (10%) tedia 0.4264 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (10%) tedia 0.4264 in 0.4264	0.1129 0.1128 0.0909 0.09100 0.09100 0.0910000000000	0.0001 0.0658 0.0000 0.0540 0.0327 0.1608 Decay (10^6) 0 81,152 0 81,152 0 65,044 227,776 993,101	0.1128 0.0909 Flow to underdrain (10^6) 101,244	0.0000 0.0471 0.0000 0.0369 0.0369 0.0369 0.0369 0.0369 0.0009 0.00092 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0471 0.0000 0.0369 1.0832 4.9486 6.1158 Outflow from BMP (10^6)	0.0658 0.0540 0.0082 0.0327 0.1608 Load removed (10^6)	58.3% 59.4% 0.8% 0.7% % removed (based on BMP inflow)	1.0% 0.9% 0.1% 0.5% 2.6% % remove (based or total inflov
ioswale S Swale 4 Underd xtended detention N xtended detention S otal Annual rai drainage a overall runo Annual rai drainage a overall runo Act Swale 4 Underd ioswale N Swale 4 Underd ioswale S Swale 4 Underd ioswale S Sw	erdrain le + Media erdrain rainfall (in) ge area (ac) unoff coeff mponents le + Media erdrain le + Media	in Tedia 0.0909 in 1.0915 4.9813 6.2766 all (in) 14.06 a (ac) 20.07 coeff 0.268 ents Inflow to BMP (10^6) 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.3434 in	0.1128 0.0909 0.0912 0.0010000000000	0.0658 0.0000 0.0540 0.0082 0.0327 0.1608 Decay (10^6) 0 81,152 0 65,044 227,776 993,101	0.0909 Flow to underdrain (10^6) 101,244	0.0471 0.0000 0.0369 0.0369 0.0369 0.0369 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (10^6) 0	0.0471 0.0000 0.0369 1.0832 4.9486 6.1158 Outflow from BMP (10^6)	0.0540 0.0082 0.0327 0.1608 Load removed (10^6)	59.4% 0.8% 0.7% % removed (based on BMP inflow)	0.9% 0.1% 0.5% 2.6% % remove (based oi total inflo
ioswale S stended detention N xtended detention S otal Annual raii drainage a overall runo ACT BMP Comp ioswale N Swale 4 Underd vtended detention N xtended detention N xtended detention S otal O BMP Comp ioswale S Swale 4 Underd vtended detention N xtended detention S otal O BMP Comp ioswale S Swale 4 Underd vtended detention N xtended detention N xtended detention S otal O BMP Comp ioswale S Swale 4 Underd vtended detention S otal O BMP Comp ioswale S Swale 4 Underd vtended detention S otal O BMP Comp ioswale S Swale 4 Underd vtended detention S otal O BMP Comp ioswale S Swale 4 Underd ioswale	le + Media erdrain rainfall (in) je area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	tedia 0.0909 in 1.0915 4.9813 6.2766 all (in) 14.06 a (ac) 20.02 coeff 0.268 ents Inflow to BMP (10^6) fedia 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.4264 in 0.3434	0.0909 0.0910 0.09100 0.09100 0.09100 0.0910000000000	0.0000 0.0540 0.0082 0.0327 0.1608 Decay (10^6) 0 81,152 0 65,044 227,776 993,101	Flow to underdrain (10^6) 101,244	0.0000 0.0369 0verflow (10^6) 0 20,092 0	0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0000 0.0000 0.0000 0.0000 End storage (10^6) 0	0.0000 0.0369 1.0832 4.9486 6.1158 Outflow from BMP (10^6)	0.0082 0.0327 0.1608 Load removed (10^6)	0.8% 0.7% % removed (based on BMP inflow)	0.1% 0.5% 2.6% % remove (based o total inflo
Underd xtended detention N xtended detention S otal	erdrain rainfall (in) je area (ac) unoff coeff mponents le + Media erdrain le + Media	in 1.0915 4.9813 6.2766 all (in) 14.06 all (ac) 20.02 coeff 0.268 ents Inflow to BMP (10^6) 101,244 in 4.467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.3434 in	0.0909 Inflow to component (10^6) 101,244 81,522 81,522 Inflow to component (lbs)	0.0540 0.0082 0.0327 0.1608 Decay (10^6) 0 81,152 0 65,044 227,776 993,101	Flow to underdrain (10^6) 101,244	0.0369 0verflow (10^6) 0 20,092 0	0.0000 0.0000 0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0000 0.0000 0.0000 End storage (10^6) 0	0.0369 1.0832 4.9486 6.1158 Outflow from BMP (10^6)	0.0082 0.0327 0.1608 Load removed (10^6)	0.7%	0.5% 2.6% % remove (based o total inflo
ixtended detention S iotal Annual rai drainage a overall runo KACT BMP Comp ioswale N Swale 4 Underd ioswale S BMP Comp BMP Comp BMP Comp ioswale N Swale 4 Underd ioswale S Swale 4 Inderd Inder	ie area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	4.9813 6.2766 all (in) 14.06 a (ac) 20.02 coeff 0.268 ents Inflow to BMP (10^6) 101,244 101,244 fedia 101,244 101 24,67,712 5,629,419 5,629,419 ents Inflow to BMP (lbs) tedia 0.4264 in	Inflow to component (10^6) 101,244 101,244 81,522 81,522 Inflow to component (lbs)	0.0082 0.0327 0.1608 Decay (10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	Overflow (10^6) 0 20,092 0	0.0000 0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0000 0.0000 End storage (10^6) 0	1.0832 4.9486 6.1158 Outflow from BMP (10^6)	0.0327 0.1608 Load removed (10^6)	0.7%	0.5% 2.6% % remove (based of total inflo
Total Annual rais drainage a overall runo SACT BMP Comp Bioswale N Underd Sioswale S Underd Sioswale S Comp BMP Comp Bioswale N Swale 4 Underd Sioswale S Swale 4 Swale 4 Sioswale S Swale 4 Swale 4 Swale 4	ie area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	6.2766 all (in) 14.06 a (ac) 20.07 coeff 0.268 ents Inflow to BMP (10^6) 101,244 in m 978,941 4,467,712 5,629,419 s 5,629,419 in 0.4264 in 0.3434	2 3 Inflow to component (10^6) 101,244 101,244 81,522 81,522 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1608 Decay (10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	0.0000 Start storage (10^6) 0	0.0000 End storage (10^6) 0	6.1158 Outflow from BMP (10^6)	0.1608 Load removed (10^6)	% removed (based on BMP inflow)	2.6% % remove (based of total inflo
Annual rai drainage a overall runo BMP Comp Bioswale N Swale + Underd BMP Underd Bioswale S Swale + Underd Extended detention N Extended detention S Fotal DRGP Comp BMP Comp	ie area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	ents Inflow to BMP (10°6) fedia 101,244 in fedia 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP ((bs) fedia 0.3434 in	2 3 Inflow to component (10^6) 101,244 101,244 81,522 81,522 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Decay (10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	Start storage (10^6) 0	End storage (10^6) 0	Outflow from BMP (10^6)	Load removed (10^6)	(based on BMP inflow)	% remove (based of total inflo
drainage a overall runo SACT BMP Comp Sioswale N Swale 4 Underd Sioswale S Swale 1 Comp Sioswale S Swale 1 Comp Sioswale N Swale 1 Comp Sioswale N Swale 1 Underd Sioswale S S	ie area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	a (ac) 20.0; coeff 0.268 ents Inflow to BMP (10^6) tedia 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.4264 in 0.3434	2 3 Inflow to component (10^6) 101,244 101,244 81,522 81,522 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	(10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	storage (10^6) 0	storage (10^6) 0	from BMP (10^6)	removed (10^6)	(based on BMP inflow)	(based o total inflo
drainage a overall runo SACT BMP Comp Sioswale N Swale 4 Underd Sioswale S Swale 1 Comp Sioswale S Swale 4 Underd Sioswale N Swale 4 Underd Sioswale N Swale 4 Underd Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Sioswale	ie area (ac) unoff coeff mponents le + Media erdrain le + Media erdrain le + Media erdrain le + Media erdrain	a (ac) 20.0; coeff 0.268 ents Inflow to BMP (10^6) tedia 101,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.4264 in 0.3434	2 3 Inflow to component (10^6) 101,244 101,244 81,522 81,522 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	(10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	storage (10^6) 0	storage (10^6) 0	from BMP (10^6)	removed (10^6)	(based on BMP inflow)	(based or total inflov
BMP Comp Bioswale N Swale + Underd Bioswale S Swale + Underd Sittended detention N Extended detention S Total BMP Comp BMP Comp Bioswale N Swale + Underd BMP Comp Bioswale N Swale + Underd Strended detention N Extended detention S Total BMP Comp BMP Comp BMP Comp Strended detention N Swale + Underd Underd Strended detention N Swale + Underd Underd Sioswale N Swale + Underd Underd Sioswale S Swale + Underd Underd Sioswale S Swale + Underd Swale + <tr< td=""><td>le + Media erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain</td><td>to BMP (10^6) (10/6) I01,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP ((bs) Iedia 0.4264 in edia</td><td>component (10^6) 101,244 81,522 81,522 Inflow to component (lbs)</td><td>(10^6) 0 81,152 0 65,044 227,776 993,101</td><td>underdrain (10^6) 101,244</td><td>(10^6) 0 20,092 0</td><td>storage (10^6) 0</td><td>storage (10^6) 0</td><td>from BMP (10^6)</td><td>removed (10^6)</td><td>(based on BMP inflow)</td><td>(based or total inflo</td></tr<>	le + Media erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain	to BMP (10^6) (10/6) I01,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP ((bs) Iedia 0.4264 in edia	component (10^6) 101,244 81,522 81,522 Inflow to component (lbs)	(10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	storage (10^6) 0	storage (10^6) 0	from BMP (10^6)	removed (10^6)	(based on BMP inflow)	(based or total inflo
tioswale N Swale 4 Underd Swale S Swale 4 Underd Swale S Swale 4 Underd Swale A Underd Swale A Swale A Underd Swale A Unde	le + Media erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain	to BMP (10^6) (10/6) I01,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP ((bs) Iedia 0.4264 in edia	component (10^6) 101,244 81,522 81,522 Inflow to component (lbs)	(10^6) 0 81,152 0 65,044 227,776 993,101	underdrain (10^6) 101,244	(10^6) 0 20,092 0	storage (10^6) 0	storage (10^6) 0	from BMP (10^6)	removed (10^6)	(based on BMP inflow)	(based or total inflov
Underd Swale 4 Underd Extended detention N Extended detention S Fotal BMP Comp Bioswale N Swale 4 Underd Bioswale S Swale 4 Underd BMP Comp Bioswale S Swale 4 Underd Strended detention N Extended detention S Fotal BMP Comp BMP Comp Sioswale N Swale 4 Underd BMP Comp Sioswale S Swale 4 Underd Sioswale S Swale 4 Underd Sioswale S Swale 4 Underd Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Sioswale S <td>erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain</td> <td>(10^6) 1edia 101,244 in 101,244 Media 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) 1edia 0.4264 in 0.3434</td> <td>(10^6) 101,244 101,244 81,522 81,522 Inflow to component (lbs)</td> <td>0 81,152 0 65,044 227,776 993,101</td> <td>(10^6) 101,244</td> <td>0 20,092 0</td> <td>(10^6) 0</td> <td>(10^6) 0</td> <td>(10^6)</td> <td>(10^6)</td> <td>BMP inflow)</td> <td>total inflo</td>	erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain	(10^6) 1edia 101,244 in 101,244 Media 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) 1edia 0.4264 in 0.3434	(10^6) 101,244 101,244 81,522 81,522 Inflow to component (lbs)	0 81,152 0 65,044 227,776 993,101	(10^6) 101,244	0 20,092 0	(10^6) 0	(10^6) 0	(10^6)	(10^6)	BMP inflow)	total inflo
Underd Bioswale S Swale 4 Underd Extended detention N Extended detention S Fotal BMP Comp Bioswale N Swale 4 Underd Bioswale N Swale 4 Underd Bioswale S Swale 4 Underd Strended detention N Extended detention N Strended detention S Total BMP Comp BMP Comp Strended detention N Extended detention N Strended detention S Total Underd BMP Comp Bioswale N Swale + Underd Strended detention N Strended detention S Total Underd Sioswale S Swale + Underd Str	erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain	tedia 101,244 in 10,244 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) fedia 0.4264 in 0.3434	101,244 101,244 81,522 81,522 Inflow to component (lbs)	0 81,152 0 65,044 227,776 993,101	101,244	0 20,092 0	0	0				
Underd Underd Underd Underd Valet Underd ixtended detention N ixtended detention S Total BMP Comp iioswale N Swalet Underd iioswale S Swalet Underd iioswale S Swalet Underd ixtended detention N ixtended detention S iotal BMP Comp iioswale N Swale * Underd iioswale S Swale * Underd iioswale N Swale * Underd iioswale N Swale * Underd iioswale S Swale * Underd iioswale S Swale * Underd iioswale S Swale * Underd <td< td=""><td>erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain</td><td>in ledia 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) 1edia 0.4264 in edia 0.3434</td><td>101,244 81,522 81,522 Inflow to component (lbs)</td><td>81,152 0 65,044 227,776 993,101</td><td></td><td>20,092 0</td><td></td><td></td><td>0</td><td>01 150</td><td>00.001</td><td></td></td<>	erdrain le + Media erdrain mponents le + Media erdrain le + Media erdrain	in ledia 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) 1edia 0.4264 in edia 0.3434	101,244 81,522 81,522 Inflow to component (lbs)	81,152 0 65,044 227,776 993,101		20,092 0			0	01 150	00.001	
iioswale S Swale 4 Underd ixtended detention N isotal BMP BMP Comp iioswale N Swale 4 Underd iioswale S Swale 4 Iioswale S Swale 4 Iioswale S Swale 4 Iioswale S Swale 4 Ii	le + Media erdrain mponents le + Media erdrain le + Media erdrain	Itedia 81,522 in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) Inflow 0.4264 in 0.3434	81,522 81,522 Inflow to component (lbs)	0 65,044 227,776 993,101	81,522	0	0		U	81,152	80.2%	1.4%
Underd ixtended detention N ixtended detention S ixtended detention S i BMP Comp BMP Comp bioswale N Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale N Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale N Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale S Swale 4 Underd Underd isoswale S	erdrain mponents le + Media erdrain le + Media erdrain	in 978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) fedia 0.4264 in 0.3434 in	81,522 Inflow to component (lbs)	65,044 227,776 993,101	81,522			0	20,092			
ixtended detention N ixtended detention S iotal BMP Comp BMP Comp BMP Comp BMP Comp BMP Comp Comp Comp Comp BMP Comp Comp Comp Comp Comp Comp Comp Comp	mponents le + Media erdrain le + Media erdrain	978,941 4,467,712 5,629,419 ents Inflow to BMP (lbs) fedia 0.4264 in edia 0.3434	Inflow to component (lbs)	227,776 993,101		16,477	0	0	0	65,044	79.8%	1.2%
ixtended detention S iotal BMP Comp Bioswale N Swale 4 Underd Strended detention N Strended detention N BMP BMP Comp Bioswale S Swale 4 Underd BMP BMP Comp Bioswale S Swale 4 Underd Strended detention N Strended detention S iotal BMP Comp BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Comp Bioswale S Swale 4 Underd Strended detention S iotal BMP Strended detention S BMP Comp Bioswale S Swale 4 Underd Strended detention S Swale 4 Strended detention S Strended d	le + Media erdrain le + Media erdrain	4,467,712 5,629,419 ents Inflow to BMP (lbs) tedia 0.4264 in tedia 0.3434	component (lbs)	993,101			0	0	16,477			
Total Second S	le + Media erdrain le + Media erdrain	5,629,419 ents Inflow to BMP (lbs) fedia 0.4264 in	component (lbs)				0	0	751,164	227,777	23.3%	4.0%
DRGN BMP Comp Sioswale N Swale + Underd Sioswale S Swale + Underd Sioswale S Swale + Underd Sioswale S Swale + Underd Sioswale N Swale + Underd Sioswale S Swale + Underd Sioswale S Swale + Underd Sioswale N Sitended detention N Sitended detention S Sotal BMP Comp Sioswale N Swale + Underd Sioswale S Swale + Swale + Sioswale S Swale + Swale	le + Media erdrain le + Media erdrain	ents Inflow to BMP (lbs) 1edia 0.4264 in 1edia 0.3434 in	component (lbs)	1,367,072			0	0	3,474,607	993,104	22.2%	17.6%
BMP Comp Bioswale N Swale + Underd Bioswale S Swale + Underd Bioswale S Underd Extended detention N Inderd Internet detention S Inderd BMP Comp BMP Comp BMP Comp BMP Comp Bioswale N Swale + Underd Underd Bioswale S Swale + Underd Underd Extended detention N Inderd Sioswale N Swale + Underd Underd Sioswale S Swale +	le + Media erdrain le + Media erdrain	to BMP (lbs) 1edia 0.4264 in 0.3434 in 0.3434	component (lbs)				0	0	4,262,342	1,367,078		24.3%
BMP Comp Bioswale N Swale + Underd Bioswale S Swale + Underd Bioswale S Underd Extended detention N Inderd Internet detention S Inderd BMP Comp BMP Comp BMP Comp BMP Comp Bioswale N Swale + Underd Underd Bioswale S Swale + Underd Underd Extended detention N Inderd Sioswale N Swale + Underd Underd Sioswale S Swale +	le + Media erdrain le + Media erdrain	to BMP (lbs) 1edia 0.4264 in 0.3434 in 0.3434	component (lbs)									
Bioswale N Swale 4 Underd Bioswale S Swale 4 Underd Extended detention N Extended detention S Total BMP Comp Bioswale N Swale 4 Underd Bioswale S Swale 4 Underd detention N Extended detention S Total D BMP Comp Bioswale S Swale 4 Underd S Extended detention S Total D BMP Comp Bioswale S Swale 4 Underd Extended detention S Total D BMP Comp Bioswale S Swale 4 Underd Extended detention S Total D Extended detention S Total D Extended detention S Total D Extended detention S	le + Media erdrain le + Media erdrain	to BMP (lbs) 1edia 0.4264 in 0.3434 in 0.3434	component (lbs)	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Underd Bioswale S Swale 4 Underd Extended detention N Extended detention S Total BMP Comp Bioswale N Swale 4 Underd Bioswale N Swale 4 Underd Bioswale S Swale 4 Underd Extended detention N Extended detention S Total BMP Comp BMP Comp Bioswale S Swale 4 Underd Extended detention N Extended detention S Total Drotal	erdrain le + Media erdrain	(lbs) 1edia 0.4264 in 0.3434 in 0.3434	(lbs)		underdrain		storage	storage	from BMP	removed	(based on	(based or
Underd Sioswale S Swale 4 Underd Extended detention N Extended detention S Fotal BMP Comp Sioswale N Swale 4 Underd Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Stended detention N Extended detention S Fotal Sioswale S Swale 4 Underd Extended detention N Extended detention S Fotal D DRGP	erdrain le + Media erdrain	1edia 0.4264 in 0.3434 in 0.3434		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Underd Bioswale S Swale 4 Underd Extended detention N Extended detention S Total BMP Comp Bioswale N Sioswale N Sioswale S Swale 4 Underd Statended detention N Extended detention N Extended detention S Total BMP Comp BMP Comp Statended detention N Statended detention S Total BMP Comp BMP Comp BMP Comp Statended detention S Total Dioswale S Swale 4 Underd Extended detention N Extended detention N Extended detention S Total	erdrain le + Media erdrain	in 1edia 0.3434 in	0.4264	0.0000	0.4264	0.0000	0.0000	0.0000	0.0000	0.2918	68.4%	1.2%
Sioswale S Swale 4 Underd Extended detention N Total BMP Comp Sioswale N Swale 4 Underd Swale 4 Swale 4 Underd Swale 4 Swale 4 S	le + Media erdrain	1edia 0.3434 in	0.4264	0.2918		0.1346	0.0000	0.0000	0.1346			
Extended detention N Extended detention S Fotal BMP Comp BMP Comp BMP Comp Underd Sioswale N Swale 4 Underd Strended detention N Extended detention S Fotal BMP Comp BMP Comp Sioswale N Swale 4 Underd Extended detention N Extended detention N Extended detention S Fotal Comp Sioswale S Swale 4 Underd Extended detention N Extended detention S Fotal Comp Sioswale S Swale 4 Comp Swale 4 Comp Swale 4 Comp Swale 4 Com			0.3434	0.0000	0.3434	0.0000	0.0000	0.0000	0.0000	0.2375	69.2%	1.0%
Extended detention N Extended detention S Fotal BMP Comp BMP Comp BMP Comp Underd Sioswale N Swale 4 Underd Strended detention N Extended detention S Fotal BMP Comp BMP Comp Sioswale N Swale 4 Underd Extended detention N Extended detention N Extended detention S Fotal Comp Sioswale S Swale 4 Underd Extended detention N Extended detention S Fotal Comp Sioswale S Swale 4 Comp Swale 4 Comp Swale 4 Comp Swale 4 Com			0.3434	0.2375		0.1059	0.0000	0.0000	0.1059			
Extended detention S Fotal BMP Comp Bioswale N Swale 4 Underd Bioswale S Comp BMP Comp BMP Comp BMP Comp BMP Comp BMP Comp BMP Comp Bioswale N Swale 4 Underd Sioswale S Swale 4 Conder	monente			0.0177			0.0000	0.0000	4.1055	0.0177	0.4%	0.1%
Total Second Se	monente	18.8173		0.0759			0.0000	0.0000	18.7415	0.0759	0.4%	0.3%
WH3N BMP Comp Bioswale N Swale + Underd Bioswale S Swale + Underd Bioswale S Swale + Underd Extended detention N Strended detention S Fotal NO3N BMP Comp BMP Comp Swale + Underd Underd Underd Sioswale N Swale + Underd Sioswale S Swale + Underd Extended detention N Strended detention S Fotal Strended detention S Fotal D	monents	23.7103		0.6229			0.0000	0.0000	23.0875	0.6228		2.6%
BMP Comp	monente	2017 200	1	0.0225			0.0000	0.0000	2510075	0.0220	.11	2.070
Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Extended detention N Standed detention S Total SMAP Comp BMP Comp Bioswale N Swale 4 Underd Sioswale S Swale 4 Underd Standed detention N Extended detention N Standed detention S Total Standed S	mnonente											
Underd Underd Swale 4 Underd Swale 4 Underd Stended detention N Stended detention S Total BMP Comp Bioswale N Swale 4 Underd Bioswale S Underd Stended detention N Stended detention S Total Stended detention S Total DRGP	mponents	ents Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Underd Sioswale S Swale 4 Underd Extended detention N Sorral BMP Comp Bioswale N Swale 4 Underd Sioswale S Underd Sioswale S Underd Extended detention N Extended detention S Fotal Sorral Sorrad Sorrad Sorral Sorral Sorrad Sorrad Sorr		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
Underd Underd Swale 4 Underd Swale 4 Underd Stended detention N Stended detention S Total BMP Comp Bioswale N Swale 4 Underd Bioswale S Underd Stended detention N Stended detention S Total Stended detention S Total DRGP		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Sioswale S Sioswale S Sixtended detention N Sixtended detention S Total BMP Sioswale N Sioswale S Sioswale	le + Media	1edia 0.1544	0.1544	0.0000	0.1544	0.0000	0.0000	0.0000	0.0000	0.1229	79.6%	1.4%
Underd Extended detention N Extended detention S Fotal BMP BMP Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Extended detention N Extended detention S Fotal DRGP	erdrain	in	0.1544	0.1229		0.0315	0.0000	0.0000	0.0315			
	le + Media		0.1243	0.0000	0.1243	0.0000	0.0000	0.0000	0.0000	0.0989	79.6%	1.2%
	erdrain	in	0.1243	0.0989		0.0254	0.0000	0.0000	0.0254			
Total Sioswale N Sioswale N Swale 4 Underd Swale 5 Swale 4 Underd Stended detention N Extended detention S Total DRGP Source Source Source Source Source Source Source Source Source Source Source Source Sourc		1.4926		0.0781			0.0000	0.0000	1.4146	0.0781	5.2%	0.9%
NO3N BMP Comp Bioswale N Underd Bioswale S Swale + Underd Extended detention N Extended detention S Total DRGP		6.8120		0.3360			0.0000	0.0000	6.4761	0.3359	4.9%	3.9%
BMP Comp Sioswale N Swale + Underd Sioswale S Swale + Underd Extended detention N Extended detention S Total DRGP		8.5833		0.6358			0.0000	0.0000	7.9475	0.6358		7.4%
BMP Comp Sioswale N Swale + Underd Sioswale S Swale + Underd Extended detention N Extended detention S Total DRGP												
Sioswale N Swale 4 Underd Sioswale S Swale 4 Underd Extended detention N Extended detention S Total DRGP	mponents	ents Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Underd Underd Sioswale S Underd Underd Underd Underd Underd Stended detention N Stended detention S Total ORGP		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
Underd Sioswale S Underd Underd Underd Underd Extended detention N Total ORGP		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Underd Underd Sioswale S Underd Underd Underd Underd Underd Stended detention N Stended detention S Total ORGP	le + Media		0.2743	0.0000	0.2743	0.0000	0.0000	0.0000	0.0000	0.2101	76.6%	1.4%
Sioswale S Swale 4 Underd Extended detention N Extended detention S Total DRGP			0.2743	0.2101	0.2/40	0.0642	0.0000	0.0000	0.0642	0.2101	, 5.076	2.770
Underd Underd Extended detention N Extended detention S Fotal DRGP	le + Media		0.2209	0.0000	0.2209	0.0000	0.0000	0.0000	0.0042	0.1692	76.6%	1.1%
Extended detention N Extended detention S Total			0.2209	0.1692	0.2205	0.0517	0.0000	0.0000	0.0517	0.1052	, 5.076	2.170
Extended detention S Total		2.6522	5.2205	0.1372		5.0317	0.0000	0.0000	2.5150	0.1373	5.2%	0.9%
otal DRGP		12.1041	1	0.1372			0.0000	0.0000	11.5133	0.1373	4.9%	3.9%
DRGP		15.2515	1	1.1073			0.0000	0.0000	14.1442	1.1073	7.370	7.3%
		13.2315	1	1.10/5	1		0.0000	0.0000	14.1442	1.10/5		1.370
BMP Comp												
	mponents	ents Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N Swale +	le + Media		0.1341	0.0000	0.1341	0.0000	0.0000	0.0000	0.0000	0.0927	69.1%	1.2%
Underd			0.1341	0.0927		0.0414	0.0000	0.0000	0.0414			
	le + Media		0.1080	0.0000	0.1080	0.0000	0.0000	0.0000	0.0000	0.0754	69.8%	1.0%
Underd	erdrain		0.1080	0.0754		0.0326	0.0000	0.0000	0.0326	L	1	
Extended detention N		1.2964		0.2058			0.0000	0.0000	1.0905	0.2058	15.9%	2.8%
xtended detention S		5.9164		0.8954			0.0000	0.0000	5.0210	0.8954	15.1%	12.0%
fotal		7.4548		1.2693			0.0000	0.0000	6.1854	1.2693		17.0%
BMP Comp		ents Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
comp	mnonents	to BMP	component	Decay	underdrain	Overhow			from BMP	removed	(based on	(based o
	mponents			(16-2)		(11)	storage (lbc)	storage (lbs)				-
Namuala N	mponents	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
		1edia 0.0530	0.0530	0.0000	0.0530	0.0000	0.0000	0.0000	0.0000	0.0367	69.2%	1.2%
	le + Media		0.0530	0.0367	0.010-	0.0163	0.0000	0.0000	0.0163	0.0000	60.051	
	le + Media erdrain	in	0.0427	0.0000	0.0427	0.0000	0.0000	0.0000	0.0000	0.0298	69.9%	1.0%
	le + Media erdrain le + Media	in 1edia 0.0427	0.0427	0.0298		0.0128	0.0000	0.0000	0.0128	L	<u> </u>	
xtended detention N	le + Media erdrain	in 1edia 0.0427 in		0.0814			0.0000	0.0000	0.4312	0.0814	15.9%	2.8%
xtended detention S	le + Media erdrain le + Media	in 1edia 0.0427		0.3539	ļ		0.0000	0.0000	1.9853	0.3539 0.5018	15.1%	12.0% 17.0%

Table E-8 2008 Flows and Loads of Subbasin 70 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Ctort	End	Outflow	Flow	% removed	% removed
	Components	Inflow to BMP	Inflow to component	Evaporation	underdrain	Overnow	Start storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
ioswale N	Swale + Media	0.3505	0.3505	0.0006	0.3499	0.0000	0.0000	0.0000	0.0000	0.0638	18.2%	0.3%
	Underdrain	0.5505	0.3303	0.0632	0.5499	0.2749	0.0000	0.0000	0.2749	0.0058	10.270	0.5%
	Swale + Media	0.2822	0.2822	0.0005	0.2818	0.2743	0.0000	0.0000	0.0000	0.0523	18.5%	0.3%
		0.2822	0.2822	0.0519	0.2818	0.2202	0.0000	0.0008	0.2202	0.0525	10.5%	0.376
Extended detention N	Underdrain	3.3894	0.2010	0.0319		0.2202	0.0000	0.0098	3.3717	0.0177	0.5%	0.1%
							0.0000	0.0000				
Extended detention S		15.4685		0.0686					15.3998	0.0687	0.4%	0.4%
Fotal		19.4907		0.2025			0.0000	0.0216	19.2666	0.2025		1.0%
dra	nual rainfall (in) ainage area (ac) rall runoff coeff	29.132 20.02 0.401										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
Bioswale N	Swale + Media	176,853	176,853	2,979	173,874	0	0	0	0	101,870	57.6%	1.0%
	Underdrain		173,875	98,885		74,811	0	172	74,811	1		
Bioswale S	Swale + Media	142,401	142,401	2,305	140,097	0	0	0	0	82,796	58.1%	0.8%
	Underdrain	,	140,097	80,486		59,467	0	138	59,467	1		
xtended detention N		1,710,005	, ,	556,560		,	0	7	1,153,436	556,562	32.5%	5.7%
Extended detention S		7,804,140		2,478,140			0	32	5,325,978	2,478,130	31.8%	25.2%
											51.0%	
otal		9,833,399		3,219,353			0	349	6,613,692	3,219,358	1	32.7%
DRGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	0.7196	0.7196	0.0016	0.7180	0.0000	0.0000	0.0000	0.0000	0.3299	45.9%	0.8%
	Underdrain		0.7130	0.3283		0.3847	0.0000	0.0050	0.3847	1	.5.570	0.070
	Swale + Media	0.5794	0.5794	0.3283	0.5782	0.0000	0.0000	0.0000	0.3847	0.2694	46.5%	0.7%
		0.3794			0.3762					0.2094	40.3%	0.7%
	Underdrain		0.5782	0.2681		0.3060	0.0000	0.0040	0.3060			
xtended detention N		6.9577		0.0498			0.0000	0.0000	6.9079	0.0498	0.7%	0.1%
xtended detention S		31.7536		0.2197			0.0000	0.0002	31.5337	0.2197	0.7%	0.5%
otal		40.0103		0.8688			0.0000	0.0093	39.1322	0.8688		2.2%
												•
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	0.3417	0.3417	0.0143	0.3274	0.0000	0.0000	0.0000	0.0000	0.1809	52.9%	1.0%
	Underdrain	0.5417	0.3274	0.1666	0.5274	0.1604	0.0000	0.0004	0.1604	0.1005	52.576	1.070
	Swale + Media	0.2751	0.2751	0.0111	0.2640	0.0000	0.0000	0.0000	0.0000	0.1463	53.2%	0.8%
		0.2751			0.2040					0.1405	55.2%	0.6%
	Underdrain		0.2640	0.1358		0.4778	0.0000	0.0009	0.1279			
Extended detention N		3.3036		0.3583			0.0000	0.0000	2.9453	0.3583	10.8%	1.9%
Extended detention S		15.0768		1.6013			0.0000	0.0000	13.4754	1.6014	10.6%	8.4%
Total		18.9972		2.2874			0.0000	0.0013	16.7090	2.2868		12.0%
NO3N			1					1			1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	0.5405	0.5405	0.0131	0.5274	0.0000	0.0000	0.0000	0.0000	0.2759	51.0%	0.9%
	Underdrain		0.5274	0.2628		0.2634	0.0000	0.0011	0.2634	1		
	Swale + Media	0.4352	0.4352	0.0102	0.4250	0.0000	0.0000	0.0000	0.0000	0.2245	51.6%	0.7%
Bioswale S						0.2098	0.0000			1		5,5
1				0 21/12		0.2030						
	Underdrain		0.4250	0.2143				0.0009	0.2098	0.5169	0.0%	1 70/
xtended detention N		5.2256		0.5168			0.0000	0.0000	4.7088	0.5168	9.9%	1.7%
Extended detention N Extended detention S		5.2256 23.8488		0.5168 2.3041			0.0000	0.0000	4.7088 21.5445	2.3042	9.9% 9.7%	7.7%
Extended detention N Extended detention S		5.2256		0.5168			0.0000	0.0000	4.7088			
Extended detention N Extended detention S Fotal		5.2256 23.8488		0.5168 2.3041			0.0000	0.0000	4.7088 21.5445	2.3042		7.7%
Extended detention N Extended detention S Total		5.2256 23.8488		0.5168 2.3041	Flow to	Overflow	0.0000	0.0000	4.7088 21.5445	2.3042		7.7%
Extended detention N Extended detention S Fotal	Underdrain	5.2256 23.8488 30.0500	0.4250	0.5168 2.3041 3.3212	Flow to		0.0000 0.0000 0.0000 Start	0.0000 0.0001 0.0022 End	4.7088 21.5445 26.7265 Outflow	2.3042 3.3213 Load	9.7%	7.7% 11.1% % remove
Extended detention N Extended detention S Fotal	Underdrain	5.2256 23.8488 30.0500 Inflow to BMP	0.4250	0.5168 2.3041 3.3212 Decay	Flow to underdrain	Overflow	0.0000 0.0000 0.0000 Start storage	0.0000 0.0001 0.0022 End storage	4.7088 21.5445 26.7265 Outflow from BMP	2.3042 3.3213 Load removed	9.7% % removed (based on	7.7% 11.1% % remove (based or
Extended detention N Extended detention S Fotal DRGP BMP	Components	5.2256 23.8488 30.0500 Inflow to BMP (lbs)	0.4250 Inflow to component (lbs)	0.5168 2.3041 3.3212 Decay (lbs)	Flow to underdrain (lbs)	Overflow (lbs)	0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0001 0.0022 End storage (lbs)	4.7088 21.5445 26.7265 Outflow from BMP (lbs)	2.3042 3.3213 Load removed (lbs)	9.7% % removed (based on BMP inflow)	7.7% 11.1% % remove (based of total inflo
Extended detention N Extended detention S Fotal DRGP BMP Bioswale N	Underdrain Components Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP	0.4250 Inflow to component (lbs) 0.2283	0.5168 2.3041 3.3212 Decay (lbs) 0.0006	Flow to underdrain	Overflow (lbs) 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000	4.7088 21.5445 26.7265 Outflow from BMP (lbs) 0.0000	2.3042 3.3213 Load removed	9.7% % removed (based on	7.7% 11.1% % remove (based or
Extended detention N Extended detention S Total DRGP BMP Bioswale N	Underdrain Components Swale + Media Underdrain	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283	0.4250 Inflow to component (lbs) 0.2283 0.2277	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014	4.7088 21.5445 26.7265	2.3042 3.3213 Load removed (lbs) 0.1075	9.7% % removed (based on BMP inflow) 47.1%	7.7% 11.1% % remove (based or total inflor 0.8%
Extended detention N Extended detention S Fotal BMP BMP Bioswale N Bioswale S	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs)	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005	Flow to underdrain (lbs)	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000	4.7088 21.5445 26.7265 Outflow from BMP (lbs) 0.0000 0.1194 0.0000	2.3042 3.3213 Load removed (lbs)	9.7% % removed (based on BMP inflow)	7.7% 11.1% % remove (based of total inflo
Extended detention N Extended detention S Total BMP BMP Bioswale N Bioswale S	Underdrain Components Swale + Media Underdrain	5.2256 23.8488 30.0500 Inflow to BMP ((bs) 0.2283 0.1838	0.4250 Inflow to component (lbs) 0.2283 0.2277	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0001	4.7088 21.5445 26.7265 0.0000 0.1194 0.0000 0.0950	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877	9.7% % removed (based on BMP inflow) 47.1% 47.7%	7.7% 11.1% % remove (based of total inflo 0.8% 0.7%
Extended detention N Extended detention S Fotal BMP BMP Bioswale N Bioswale S Extended detention N	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000	4.7088 21.5445 26.7265 Outflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9%	7.7% 11.1% % remove (based of total inflo 0.8% 0.7% 3.8%
Extended detention N Extended detention S Fotal BMP Bioswale N Bioswale S Extended detention N Extended detention S	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463	9.7% % removed (based on BMP inflow) 47.1% 47.7%	7.7% 11.1% % remove (based of total inflor 0.8% 0.7% 3.8% 16.9%
Extended detention N Extended detention S Fotal BMP Bioswale N Bioswale S Extended detention N Extended detention S	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000	4.7088 21.5445 26.7265 Outflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9%	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8%
Extended detention N Extended detention S Total BMP Bioswale N Bioswale S Extended detention N Extended detention S Total	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463	Flow to underdrain (lbs) 0.2277	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9%	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9%
Extended detention N Extended detention S Total BMP Bioswale N Bioswale S Extended detention N Extended detention S Total DRTHOP	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259	Flow to underdrain (lbs) 0.2277 0.1834	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3%	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9% 22.3%
Extended detention N Extended detention S Total BMP Bioswale N Bioswale S Extended detention N Extended detention S Total	Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow	0.4250	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463	Flow to underdrain (lbs) 0.2277 0.1834	Overflow (lbs) 0.0000 0.1194 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0014 0.0000 0.0001 0.0001 0.00025 End	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3%	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9% 22.3% % remove
Extended detention N Extended detention S Total BMP Bioswale N Bioswale S Extended detention N Extended detention S Total DRTHOP	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259 Decay	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0001 0.0001 0.0000 0.0001 0.00025 End storage	4.7088 21.5445 26.7265	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based o
Extended detention N Extended detention S Total BMP Bioswale N Sioswale S Extended detention N Extended detention S Total DRTHOP BMP BMP BMP BMP BMP BMP BMP BMP BMP BM	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Components	5.2256 23.8488 30.0500 	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs)	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs)	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs)	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs)	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0001 0.0000 0.0001 0.00025 End storage (lbs)	4.7088 21.5445 26.7265 0 Utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 Outflow from BMP (lbs)	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed (lbs)	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow)	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 16.9% 22.3% % remove (based o total inflo
Extended detention N Extended detention S Total BMP BMP Bioswale N Sioswale S Extended detention N Extended detention S Total DRTHOP BMP BMP Bioswale N Sioswale N	Underdrain Components Swale + Media Underdrain Swale + Media Components Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0902	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0014 0.0000 0.0001 0.0001 0.00025 End storage (lbs) 0.0000	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 0utflow from BMP (lbs) 0.0000	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based o
Extended detention N Extended detention S Total BMP BMP Bioswale N Sioswale S Extended detention N Extended detention S Total DRTHOP BMP BMP Bioswale N Sioswale N	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Components	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP (lbs) 0.0902	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0902 0.0900	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002 0.0422	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs) 0.0900	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000 0.0472	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0001 0.0000 0.0001 0.00025 End storage (lbs)	4.7088 21.5445 26.7265 0 Utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 Outflow from BMP (lbs)	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed (lbs)	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow)	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based o total inflo
Extended detention N Extended detention S Fotal BMP BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal DRTHOP BMP BMP	Underdrain Components Swale + Media Underdrain Swale + Media Components Swale + Media	5.2256 23.8488 30.0500 	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0902	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs)	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0014 0.0000 0.0001 0.0001 0.00025 End storage (lbs) 0.0000	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 0utflow from BMP fom BMP (lbs) 0.0000	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed (lbs)	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow)	7.7% 11.1% % remove (based o total inflo 0.8% 0.7% 16.9% 22.3% % remove (based o total inflo
Extended detention N Extended detention S Fotal BMP Bioswale N Extended detention N Extended detention S Fotal DRTHOP BMP Bioswale N Bioswale S BMP Bioswale S BMP Bioswale S BMP Bioswale S Bioswale Biosw	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP (lbs) 0.0902	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0900 0.0902	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002 0.0422	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs) 0.0900	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000 0.0472 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0001 0.0014 0.0000 0.0001 0.0001 0.0002 End storage (lbs) 0.0000 0.0005	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 1.7230 1.7230 1.7230 1.7230 0.0000 0.0472	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.1463 2.8259 Load removed (lbs) 0.0424	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow) 47.0%	7.7% 11.1% % remove (based of total infilo 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based of total infilo 0.8%
Extended detention N Extended detention S Fotal BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP BMP BMP Bioswale N Bioswale S	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP (lbs) 0.0902 0.0726	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0902 0.0900	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002 0.0002 0.0002 0.0344	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs) 0.0900	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000 0.0472	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0001 0.0001 0.0001 0.00025 End storage (lbs) 0.0000 0.0005 0.0000 0.0005	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 0utflow from BMP (lbs) 0.0000 0.0472 0.0000 0.0376	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.8259 Load removed (lbs) 0.0424 0.0346	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow) 47.0% 47.7%	7.7% 11.1% % remove (based of total inflor 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based of total inflor 0.8% 0.7%
Extended detention N Total DRGP BMP Bioswale N Sioswale S Extended detention N Extended detention S Total DRTHOP BMP BMP BMP Bioswale S Sioswale S	Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media	5.2256 23.8488 30.0500 Inflow to BMP (lbs) 0.2283 0.1838 2.2074 10.0740 12.6934 Inflow to BMP (lbs) 0.0902	0.4250 Inflow to component (lbs) 0.2283 0.2277 0.1838 0.1834 Inflow to component (lbs) 0.0900 0.0902	0.5168 2.3041 3.3212 Decay (lbs) 0.0006 0.1069 0.0005 0.0873 0.4843 2.1463 2.8259 Decay (lbs) 0.0002 0.0422 0.0002	Flow to underdrain (lbs) 0.2277 0.1834 Flow to underdrain (lbs) 0.0900	Overflow (lbs) 0.0000 0.1194 0.0000 0.0950 Overflow (lbs) 0.0000 0.0472 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0000 0.0001 0.0022 End storage (lbs) 0.0000 0.0014 0.0000 0.0001 0.0001 0.0001 0.0001 0.00025 End storage (lbs) 0.0000 0.00005 0.0000	4.7088 21.5445 26.7265 0utflow from BMP (lbs) 0.0000 0.1194 0.0000 0.0950 1.7230 7.9276 9.8650 0utflow from BMP (lbs) 0.0000 0.0472 0.0000	2.3042 3.3213 Load removed (lbs) 0.1075 0.0877 0.4843 2.1463 2.1463 2.8259 Load removed (lbs) 0.0424	9.7% % removed (based on BMP inflow) 47.1% 47.7% 21.9% 21.3% % removed (based on BMP inflow) 47.0%	7.7% 11.1% % remove (based of total infilo 0.8% 0.7% 3.8% 16.9% 22.3% % remove (based of total infilo 0.8%

Table E-9 2009 Flows and Loads of Subbasin 70 BMP Performance Evaluation Modeling

	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
ioswale N	Swale + Media	0.3986	0.3986	0.0006	0.3979	0.0000	0.0000	0.0000	0.0000	0.0940	22.9%	0.4%
	Underdrain		0.3979	0.0934		0.3164	0.0118	0.0000	0.3164			
ioswale S	Swale + Media	0.3209	0.3209	0.0005	0.3204	0.0000	0.0000	0.0000	0.0000	0.0773	23.4%	0.3%
	Underdrain		0.3204	0.0768		0.2534	0.0098	0.0000	0.2534			
Extended detention N		3.8536		0.0218			0.0000	0.0000	3.8318	0.0218	0.6%	0.1%
Extended detention S		17.5872		0.0863			0.0000	0.0000	17.5009	0.0862	0.5%	0.4%
otal		22.1603		0.2794			0.0216	0.0000	21.9025	0.2794		1.3%
dr	nnual rainfall (in) rainage area (ac) erall runoff coeff	31.874 20.02 0.417										
ACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
ioswale N	Swale + Media	190,791	190,791	1,635	189,156	0	0	0	0	119,004	62.3%	1.1%
	Underdrain		189,156	117,376		71,959	172	0	71,959	1		
ioswale S	Swale + Media	153,625	153,625	1,239	152,386	0	0	0	0	96,745	62.9%	0.9%
	Underdrain		152,386	95,512		57,018	138	0	57,018	1		
xtended detention N		1,844,774		645,137			7	0	1,199,644	645,138	35.0%	6.1%
xtended detention S		8,419,217		2,867,181			32	0	5,552,068	2,867,181	34.1%	27.0%
otal	1	10,608,407		3,728,079			349	0	6,880,688	3,728,068	1	35.1%
0101		10,000,407		5,120,015			343	U	0,000,000	3,720,000	1	55.1/6
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIL	components	to BMP	component	Secury	underdrain	o.cmow	storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	(IDS) 0.7505	(IDS) 0.7505	0.0006	(IDS) 0.7498	0.0000	0.0000	(IDS) 0.0000	(IDS) 0.0000	(IDS) 0.3818	50.5%	0.9%
NOSWAIE IN		0.7505			0.7498					0.5818	50.5%	0.9%
Vieguale 6	Underdrain	0.6043	0.7498	0.3812	0.6030	0.3737	0.0050	0.0000	0.3737	0 2112	E1 30/	0.7%
Bioswale S	Swale + Media	0.6042	0.6042	0.0005	0.6038	0.0000	0.0000	0.0000	0.0000	0.3112	51.2%	0.7%
	Underdrain		0.6038	0.3108		0.2970	0.0040	0.0000	0.2970			
xtended detention N		7.2561		0.0599			0.0000	0.0000	7.1963	0.0599	0.8%	0.1%
Extended detention S		33.1156		0.2638			0.0002	0.0000	32.8520	0.2638	0.8%	0.6%
fotal		41.7264		1.0168			0.0093	0.0000	40.7189	1.0168		2.4%
NH3N	-	-	-				-				<u> </u>	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale N	Swale + Media	0.3675	0.3675	0.0069	0.3606	0.0000	0.0000	0.0000	0.0000	0.1951	53.0%	1.0%
	Underdrain		0.3606	0.1882		0.1727	0.0004	0.0000	0.1727			
Bioswale S	Swale + Media	0.2959	0.2959	0.0052	0.2907	0.0000	0.0000	0.0000	0.0000	0.1593	53.7%	0.8%
	Underdrain		0.2907	0.1535		0.1375	0.0009	0.0000	0.1375			
Extended detention N		3.5530		0.4263			0.0000	0.0000	3.1266	0.4263	12.0%	2.1%
Extended detention S		16.2150		1.9109			0.0000	0.0000	14.3042	1.9109	11.8%	9.4%
otal		20.4313		2.6910			0.0013	0.0000	17.7410	2.6916		13.2%
NO3N						Overflow	Start	End	Outflow	Load	% removed	% remove
BMP	Components	Inflow	Inflow to	Decay	Flow to							
	Components	to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	
BMP		to BMP (lbs)	component (Ibs)	(lbs)	underdrain (lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(based on BMP inflow)	total inflo
BMP	Swale + Media	to BMP	component (lbs) 0.5821	(lbs) 0.0059	underdrain	0.0000	(lbs) 0.0000	(lbs) 0.0000	(lbs) 0.0000		(based on	
BMP Bioswale N	Swale + Media Underdrain	to BMP (lbs) 0.5821	component (lbs) 0.5821 0.5762	(lbs) 0.0059 0.3128	underdrain (lbs) 0.5762	0.0000 0.2645	(lbs) 0.0000 0.0011	(lbs) 0.0000 0.0000	(lbs) 0.0000 0.2645	(lbs) 0.3188	(based on BMP inflow) 54.6%	total inflov 1.0%
BMP Bioswale N	Swale + Media Underdrain Swale + Media	to BMP (lbs)	component (lbs) 0.5821 0.5762 0.4687	(lbs) 0.0059 0.3128 0.0045	underdrain (lbs)	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0000	(lbs) 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000	(lbs)	(based on BMP inflow)	total inflo
BMP Bioswale N	Swale + Media Underdrain	to BMP (lbs) 0.5821	component (lbs) 0.5821 0.5762	(lbs) 0.0059 0.3128	underdrain (lbs) 0.5762	0.0000 0.2645	(lbs) 0.0000 0.0011 0.0000 0.0009	(lbs) 0.0000 0.0000	(lbs) 0.0000 0.2645	(lbs) 0.3188	(based on BMP inflow) 54.6%	total inflov 1.0%
BMP Bioswale N Bioswale S	Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821	component (lbs) 0.5821 0.5762 0.4687	(lbs) 0.0059 0.3128 0.0045	underdrain (lbs) 0.5762	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0000	(lbs) 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000	(lbs) 0.3188	(based on BMP inflow) 54.6%	total inflo 1.0%
BMP Bioswale N Bioswale S Extended detention N	Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687	component (lbs) 0.5821 0.5762 0.4687	(lbs) 0.0059 0.3128 0.0045 0.2549	underdrain (lbs) 0.5762	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0009	(lbs) 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103	(lbs) 0.3188 0.2594	(based on BMP inflow) 54.6% 55.2%	total inflov 1.0% 0.8%
BMP Bioswale N Bioswale S Extended detention N Extended detention S	Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287	component (lbs) 0.5821 0.5762 0.4687	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106	underdrain (lbs) 0.5762	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182	(lbs) 0.3188 0.2594 0.6105	(based on BMP inflow) 54.6% 55.2% 10.8%	total inflov 1.0% 0.8% 1.9%
Bioswale N Bioswale S Extended detention N Extended detention S Total	Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882	component (lbs) 0.5821 0.5762 0.4687	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206	underdrain (lbs) 0.5762	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677	(lbs) 0.3188 0.2594 0.6105 2.7206	(based on BMP inflow) 54.6% 55.2% 10.8%	0.8% 1.9% 8.4%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total DRGP	Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678	component (lbs) 0.5821 0.5762 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094	underdrain (lbs) 0.5762 0.4643	0.0000 0.2645 0.0000 0.2103	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0000 0.0001 0.0022	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093	(based on BMP inflow) 54.6% 55.2% 10.8%	total inflov 1.0% 0.8% 1.9% 8.4% 12.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total	Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow	component (lbs) 0.5821 0.5762 0.4643 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206	underdrain (lbs) 0.5762 0.4643 Flow to	0.0000 0.2645 0.0000	(lbs) 0.0000 0.0011 0.0009 0.0000 0.0000 0.0001 0.0022 Start	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total DRGP	Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow to BMP	component (lbs) 0.5821 0.5762 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay	underdrain (lbs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 Overflow	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0000 0.0001 0.0022 Start storage	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.00000 0.000000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of
BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP BMP	Swale + Media Underdrain Swale + Media Underdrain Components	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow to BMP (lbs)	component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs)	underdrain (lbs) 0.5762 0.4643 Flow to underdrain (lbs)	0.0000 0.2645 0.0000 0.2103 Overflow (lbs)	(lbs) 0.0000 0.0011 0.0009 0.0000 0.0001 0.0002 Start storage (lbs)	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs)	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2645 0.0000 0.2645 0.0000 0.2645 0.0000 0.2645 0.0000 0.2645 0.0000 0.2645 0.0000 0.2645 0.0000 0.2103 5.0182 2.2.9677 0.0000 0.2103 5.0182 0.0000 0.2103 5.0182 0.0000 0.2103 5.0182 0.0000 0.2103 5.0182 0.0000 0.2103 0.2000 0.2103 0.0000 0.2103 0.0000 0.2103 0.0000 0.2103 0.0000 0.2103 0.2000 0.0000 0.2103 0.0000 0.2203 0.2205 0.0000 0.2203 0.2205 0.2205 0.0000 0.2203 0.2205 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.2203 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.0000 0.2203 0.000000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs)	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow)	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflo
BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP BMP	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow to BMP	component (lbs) 0.5821 0.5762 0.4687 0.4643 Inflow to component (lbs) 0.2370	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003	underdrain (lbs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.0000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP BMP Bioswale N	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 32.3678 Inflow to BMP (lbs) 0.2370	component (lbs) 0.5821 0.5762 0.4687 0.4643 Inflow to component (lbs) 0.2370 0.2368	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0004	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 28.4607 0.00tflow from BMP (lbs) 0.0000 0.1147	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflo 0.9%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP BMP Bioswale N	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Swale + Media Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow to BMP (lbs)	component (lbs) 0.5821 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002	underdrain (lbs) 0.5762 0.4643 Flow to underdrain (lbs)	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000	(lbs) 0.0000 0.0011 0.0009 0.0009 0.0001 0.0001 0.0022 Start storage (lbs) 0.0000 0.0001 4.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs)	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow)	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflo
BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP BMP Bioswale N Bioswale S	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 Inflow to BMP (lbs) 0.2370 0.1908	component (lbs) 0.5821 0.5762 0.4687 0.4643 Inflow to component (lbs) 0.2370 0.2368	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147	(lbs) 0.0000 0.0011 0.0000 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.0912	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5%	total inflov 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflov 0.9% 0.8%
BMP Bioswale N Bioswale S Extended detention N Extended detention S ordal BMP BMP Bioswale N Bioswale S Extended detention N	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Swale + Media Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917	component (lbs) 0.5821 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.1147 1.7238	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% 0.6% 0.6% 53.2% 52.5% 52.5% 24.8%	total inflov 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflov 0.9% 0.8% 4.3%
BMP bioswale N bioswale S ixtended detention N ixtended detention S ortal BMP bioswale N bioswale N bioswale S ixtended detention N ixtended detention S	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Swale + Media Swale + Media	to BMP (lbs) 0.5821 0.4687 25.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587	component (lbs) 0.5821 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000	(lbs) 0.0000 0.0011 0.0009 0.0009 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0011	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 1.7238 7.9448	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflo 0.9% 0.8% 4.3% 19.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale N Bioswale N Bioswale S Extended detention N Extended detention S	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Swale + Media Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917	component (lbs) 0.5821 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000	(lbs) 0.0000 0.0011 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.1147 1.7238	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% 0.6% 0.6% 53.2% 52.5% 52.5% 24.8%	total inflov 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflov 0.9% 0.8% 4.3%
BMP	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 inflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782	component (lbs) 0.5821 0.5762 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063	underdrain (lbs) 0.5762 0.4643 Flow to underdrain (lbs) 0.2368 0.1906	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000 0.0912	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001 0.0001 0.0002 0.0001	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.0912 1.7238 7.9448 9.8744	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5% 24.8% 24.0%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based of total inflo 0.9% 0.8% 4.3% 19.1% 25.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Swale + Media Swale + Media	to BMP (lbs) 0.5821 0.4687 25.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587	component (lbs) 0.5821 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000	(lbs) 0.0000 0.0011 0.0009 0.0009 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0011	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 1.7238 7.9448	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% 0.6% 0.6% 53.2% 52.5% 52.5% 24.8%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based o total inflo 0.9% 0.8% 4.3% 19.1% 25.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale N Bioswale N Bioswale S Extended detention N Extended detention S Total DRTHOP	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 inflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782	component (lbs) 0.5821 0.5762 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063	underdrain (lbs) 0.5762 0.4643 Flow to underdrain (lbs) 0.2368 0.1906	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000 0.0912	(lbs) 0.0000 0.0011 0.0000 0.0009 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001 0.0001 0.0002 0.0001	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.0912 1.7238 7.9448 9.8744	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5% 24.8% 24.0%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based o total inflo 0.9% 0.8% 19.1% 25.1% % remove
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale N Bioswale N Bioswale S Extended detention N Extended detention S Total DRTHOP	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 25.6287 25.6882 32.3678 1nflow 0.8MP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782	component (lbs) 0.5821 0.5762 0.4687 0.4643	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063	underdrain (Ibs) 0.5762 0.4643 Flow to underdrain (Ibs) 0.2368 0.1906 Flow to	0.0000 0.2645 0.0000 0.2103 Overflow (lbs) 0.0000 0.1147 0.0000 0.0912	(lbs) 0.0000 0.00011 0.0009 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0014 0.0000 0.0011 0.0000 0.0001 0.0001 0.0002 Start	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.000000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.0000 0.1147 0.0000 0.01147 0.0000 0.01147 1.7238 7.9448 9.8744	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5% 24.8% 24.0%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based o total inflo 0.9% 0.8% 4.3% 19.1% 25.1%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale N Bioswale N Bioswale S Extended detention S Total DRHDP BMP BMP BMP BMP BMP BMP BMP BMP BMP BM	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 32.3678 Inflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP	component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063	underdrain (Ibs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0.2103 0.2103 0.2103 0.2103 0.2103 0.0000 0.1147 0.0000 0.01147 0.0000 0.0912	(lbs) 0.0000 0.0001 0.0009 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0014 0.0000 0.0014 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 Start storage Start storage	(lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9577 28.4607 Outflow from BMP (lbs) 0.0000 0.1147 0.0000 0.1147 9.8744 Outflow from BMP	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5% 24.8% 24.0%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based or 0.8% 4.3% 19.1% 25.1% % remove (based or
BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale N Bioswale N Bioswale S Extended detention S Total DRHDP BMP BMP BMP BMP BMP BMP BMP BMP BMP BM	Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 25.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP (lbs)	Component (lbs) 0.5821 0.5762 0.4687 0.4643 Inflow to component (lbs) 0.2370 0.2368 0.1906 Inflow to component (lbs) 0.906	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063 Decay (lbs) 0.0001	underdrain (Ibs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0.2103 0.0000 0.1147 0.0000 0.1147 0.0000 0.0912 0.0912	(lbs) 0.0000 0.0001 0.0009 0.0009 0.0001 0.0022 Start storage (lbs) 0.0000 0.0011 0.0000 0.0011 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 Start storage (lbs) 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.01147 0.0000 0.1147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.01147 0.0000 0.0012 0.0012 0.0000 0.01147 0.0000 0.0012 0.0000 0.0012 0.0000 0.0012 0.0000 0.0012 0.0000 0.0012 0.0000 0.0000 0.0012 0.0000 0.0012 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063 Load removed (lbs)	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 24.8% 24.0%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based o total inflo 0.9% 0.8% 4.3% 19.1% 25.1% % remove (based o total inflo 0.9%
BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP Bioswale N Bioswale S Extended detention S Fotal BMP Bioswale S Extended detention S Fotal BMP Bioswale N BMP Bioswale N BMP Bioswale N	Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP (lbs) 0.0937	Component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063 Decay (lbs) 0.0001 0.0488	Underdrain (lbs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0verflow (lbs) 0.0000 0.1147 0.0000 0.0912 0verflow (lbs) 0.0000 0.0453	(lbs) 0.0000 0.0001 0.0009 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0011 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0005	(lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9577 28.4607 0.01182 0.0000 0.0000 0.1147 0.0000 0.0001 1.7238 7.9448 9.8744 0.0000 0.0000 0.00453	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1236 0.1008 0.5679 2.5140 3.3063 Load removed (lbs) 0.0489	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 52.5% 24.8% 24.0% 40% 51.9%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based o total inflo 0.9% 0.8% 4.3% 19.1% 25.1% % remove (based o total inflo 0.9%
BMP	Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 25.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP (lbs)	Component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063 Decay (lbs) Decay (lbs) 0.0001 0.0488 0.0001	underdrain (Ibs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0.2103 0.2103 0.0000 0.1147 0.0000 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0000 0.0453 0.0000	(lbs) 0.0000 0.0001 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0011 0.0000 0.0011 0.0000 0.0001 0.0005 0.0000 0.0005 0.0000	(lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.1147 0.0000 0.1147 0.0000 0.1147 1.7238 7.9448 9.8744 9.8744 0.0000 0.0012 0.0000 0.0453 0.0000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063 Load removed (lbs)	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 24.8% 24.0%	total inflot 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based or total inflot 0.9% 0.8% 4.3% 19.1% 25.1% % remove (based or total inflot 0.5%
BMP Bioswale N Bioswale S BMP BMP Bioswale A BMP Bioswale N Bioswale S Extended detention N Extended detention S Total BMP Bioswale S Extended detention S Total BMP Bioswale N Bioswale N Bioswale S BMP Bioswale	Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.5821 0.4687 25.6882 32.3678 Inflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP (lbs) 0.0937 0.0755	Component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063 Decay (lbs) 0.0001 0.488 0.0001 0.0488 0.0001 0.0398	Underdrain (lbs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0verflow (lbs) 0.0000 0.1147 0.0000 0.0912 0verflow (lbs) 0.0000 0.0453	(lbs) 0.0000 0.0001 0.0009 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0011 0.0000 0.0011 0.0000 0.0001 0.0005 Start storage (lbs) 0.0000 0.0001 0.0005 0.0000 0.0005	(lbs) 0.00000 0.00000 0.00000 0.00000000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.1147 0.0000 0.1147 0.0000 0.0912 1.7238 7.9448 9.8744 9.8744 0.000flow from BMP (lbs) 0.0000 0.0453 0.0000 0.0453 0.0000 0.0360	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1008 0.5679 2.5140 3.3063 Load removed (lbs) 0.0489 0.0399	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 51.9% 52.5% 24.8% 24.0% 24.0% 51.9%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based or total inflo 0.9% 4.3% 19.1% 25.1% % remove (based or total inflo 0.9% 0.8%
BMP Bioswale N Bioswale S Extended detention N Extended detention S BMP BMP Bioswale N Bioswale S Extended detention N Extended detention S Fotal BMP BMP BMP	Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.5821 0.4687 5.6287 25.6882 32.3678 1nflow to BMP (lbs) 0.2370 0.1908 2.2917 10.4587 13.1782 Inflow to BMP (lbs) 0.0937	Component (lbs) 0.5821 0.5762 0.4687 0.4643 	(lbs) 0.0059 0.3128 0.0045 0.2549 0.6106 2.7206 3.9094 Decay (lbs) 0.0003 0.1234 0.0002 0.1006 0.5679 2.5140 3.3063 Decay (lbs) Decay (lbs) 0.0001 0.0488 0.0001	Underdrain (lbs) 0.5762 0.4643 	0.0000 0.2645 0.0000 0.2103 0.2103 0.2103 0.0000 0.1147 0.0000 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0000 0.0453 0.0000	(lbs) 0.0000 0.0001 0.0000 0.0000 0.0001 0.0022 Start storage (lbs) 0.0000 0.0011 0.0000 0.0011 0.0000 0.0001 0.0005 0.0000 0.0005 0.0000	(lbs) 0.0000	(lbs) 0.0000 0.2645 0.0000 0.2103 5.0182 22.9677 28.4607 0.0000 0.1147 0.0000 0.1147 0.0000 0.1147 1.7238 7.9448 9.8744 9.8744 0.0000 0.0012 0.0000 0.0453 0.0000	(lbs) 0.3188 0.2594 0.6105 2.7206 3.9093 Load removed (lbs) 0.1236 0.1236 0.1008 0.5679 2.5140 3.3063 Load removed (lbs) 0.0489	(based on BMP inflow) 54.6% 55.2% 10.8% 10.6% % removed (based on BMP inflow) 52.5% 24.8% 24.0% 40% 51.9%	total inflo 1.0% 0.8% 1.9% 8.4% 12.1% % remove (based or total inflo 0.9% 0.8% 4.3% 19.1% 25.1%

Table E-10 2010 Flows and Loads of Subbasin 70 BMP Performance Evaluation Modeling

	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% remove
Components	to BMP	component	Evaporation	underdrain	overnow	storage	storage	from BMP	removed	(based on	(based on
	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
Swale + Media					0.0178						0.4%
Underdrain									1		
Swale + Media	1.1566		0.0024	1.1415	0.0127	0.0000	0.0000	0.0127	0.2635	22.8%	0.3%
Underdrain		1.1415	0.2611		0.8805	0.0000	0.0000	0.8805	1		
	13.8895		0.0839			0.0000	0.0000	13.8057	0.0839	0.6%	0.1%
	63.3889		0.3290			0.0000	0.0000	63.0600	0.3289	0.5%	0.4%
	79.8716		0.9971			0.0000	0.0000	78.8746	0.9971		1.2%
· · · ·										•	
otal rainfall (in) ainage area (ac) rall runoff coeff	121.304 20.02 0.395										
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
	to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
Swale + Media	732,665	732,665	9,560	721,785	1,320	0	0	1,320	461,671	63.0%	1.1%
Underdrain		721,786	452,111		269,674	0	0	269,674			
Swale + Media	589,939	589,939	7,172	581,791	976	0	0	976	374,124	63.4%	0.9%
Underdrain		581,791	366,951		214,840	0	0	214,840			
	7,084,193		2,179,804			0	0	4,904,385	2,179,809	30.8%	5.4%
	32,330,960		9,663,062			0	0	22,667,903	9,663,058	29.9%	23.7%
	40,737,758		12,678,659			0	0	28,059,097	12,678,661		31.1%
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
	to BMP	component		underdrain		storage	storage	from BMP	removed	(based on	(based o
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Swale + Media	2.9835		0.0049	2.9748	0.0037	0.0000	0.0000	0.0037	1.4800	49.6%	0.9%
Underdrain		2.9748	1.4751	-	1.4997	0.0000	0.0000	1.4997	1		
Swale + Media	2.4022	2.4022	0.0036	2.3959	0.0027	0.0000	0.0000	0.0027	1.2080	50.3%	0.7%
			1.2044		1.1915	0.0000	0.0000	1.1915	1		
	28.8471								0.1900	0.7%	0.1%
								130.8198			0.5%
								162,1745			2.2%
I	100.0017		5.7102			0.0000	0.0000	102.127 15	5.7102		2.270
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	beol	% removed	% remove
components			Decay		010111011						(based or
			(lbc)		(lbc)	-					total inflo
Swala i Madia											1.0%
	1.3970			1.3411					0.7867	50.3%	1.0%
	1 1240			1 0022					0.007	FC 00/	0.8%
	1.1240			1.0622					0.0587	50.6%	0.6%
Underdrain	12 5070	1.0822			0.4778				1 2002	0.70/	1 70/
											1.7%
								1		9.4%	7.5%
	//.6/55		8.5558			0.0000	0.0000	69.1198	8.5558		11.0%
			-	-							- (
Components			Decay		Overflow						% remove
											(based o
											total inflo
	2.2419			2.1915					1.2491	55.7%	1.0%
Swale + Media	1.8051			1.7671					1.0148	56.2%	0.8%
Underdrain		1.7671	0.9851		0.7820	0.0000	0.0000	0.7820			
	21.6768		1.9315			0.0000	0.0000	19.7453	1.9315	8.9%	1.5%
	98.9285		8.5594			0.0000	0.0000	90.3690	8.5595	8.7%	6.9%
	124.6523		12.7548			0.0000	0.0000	111.8974	12.7548		10.2%
		1			Ourseflaurs	Start	End	Outflow	Load	% removed	% remove
Components	Inflow	Inflow to	Decay	Flow to	Overflow						(based o
Components	to BMP	Inflow to component	Decay	Flow to underdrain	Overnow	storage	storage	from BMP	removed	(based on	(based 0
Components			Decay (Ibs)		(lbs)		storage (Ibs)		removed (lbs)	(based on BMP inflow)	
Components Swale + Media	to BMP	component		underdrain		storage		from BMP			total inflo 0.9%
Swale + Media Underdrain	to BMP (lbs)	component (Ibs)	(lbs)	underdrain (lbs)	(lbs)	storage (lbs)	(lbs)	from BMP (lbs)	(lbs)	BMP inflow)	total inflo
Swale + Media	to BMP (lbs)	component (lbs) 0.9483	(lbs) 0.0019	underdrain (lbs)	(lbs) 0.0011	storage (lbs) 0.0000	(lbs) 0.0000	from BMP (lbs) 0.0011	(lbs)	BMP inflow)	total inflo
Swale + Media Underdrain	to BMP (lbs) 0.9483	component (lbs) 0.9483 0.9453	(lbs) 0.0019 0.4788	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665	storage (lbs) 0.0000 0.0000	(lbs) 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665	(lbs) 0.4806	BMP inflow) 50.7%	total inflo 0.9%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483	component (lbs) 0.9483 0.9453 0.7635	(lbs) 0.0019 0.4788 0.0014	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008	(lbs) 0.4806	BMP inflow) 50.7%	total inflo 0.9%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635	component (lbs) 0.9483 0.9453 0.7635	(lbs) 0.0019 0.4788 0.0014 0.3906	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708	(lbs) 0.4806 0.3919	BMP inflow) 50.7% 51.3%	total inflo 0.9% 0.7%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446	component (lbs) 0.9483 0.9453 0.7635	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961	(lbs) 0.4806 0.3919 1.9367 8.5485	BMP inflow) 50.7% 51.3% 21.1%	total inflo 0.9% 0.7% 3.7%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688	component (lbs) 0.9483 0.9453 0.7635	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321	(lbs) 0.4806 0.3919 1.9367	BMP inflow) 50.7% 51.3% 21.1%	total inflo 0.9% 0.7% 3.7% 16.2%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446	component (lbs) 0.9483 0.9453 0.7635	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485	underdrain (lbs) 0.9453	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961	(lbs) 0.4806 0.3919 1.9367 8.5485	BMP inflow) 50.7% 51.3% 21.1%	total inflo 0.9% 0.7% 3.7% 16.2%
Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252	component (lbs) 0.9483 0.9453 0.7635 0.7613	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577	underdrain (lbs) 0.9453 0.7613	(lbs) 0.0011 0.4665 0.0008 0.3708	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577	BMP inflow) 50.7% 51.3% 21.1% 20.4%	total inflo 0.9% 0.7% 3.7% 16.2% 21.5%
Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow	component (lbs) 0.9483 0.9453 0.7635 0.7613	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485	underdrain (lbs) 0.9453 0.7613 Flow to	(lbs) 0.0011 0.4665 0.0008	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load	BMP inflow) 50.7% 51.3% 21.1% 20.4%	total inflo 0.9% 0.7% 3.7% 16.2% 21.5%
Swale + Media Underdrain Swale + Media Underdrain	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP	component (lbs) 0.9483 0.9453 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay	Inderdrain (lbs) 0.9453 0.7613 0.7613	(lbs) 0.0011 0.4665 0.0008 0.3708 Overflow	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o
Swale + Media Underdrain Swale + Media Underdrain Components	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP (lbs)	component (lbs) 0.9483 0.9453 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs)	underdrain (lbs) 0.9453 0.7613 Flow to underdrain (lbs)	(lbs) 0.0011 0.4665 0.0008 0.3708 Overflow (lbs)	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs)	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs)	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP (lbs)	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed (lbs)	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on BMP inflow)	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o total inflo
Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP	component (lbs) 0.9483 0.7635 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs) 0.0009	Inderdrain (lbs) 0.9453 0.7613 0.7613	(lbs) 0.0011 0.4665 0.0008 0.3708 Overflow (lbs) 0.0009	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP f(lbs) 0.0009	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on	total inflc 0.9% 0.7% 3.7% 16.2% 21.5% % removides the second sec
Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP (lbs) 0.3787	component (lbs) 0.9483 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs) 0.0009 0.1915	underdrain (lbs) 0.9453 0.7613 Flow to underdrain (lbs) 0.3770	(lbs) 0.0011 0.4665 0.0008 0.3708 0.3708 0.0verflow (lbs) 0.0009 0.1855	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP (lbs) 0.0009 0.1855	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed (lbs) 0.1924	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on BMP inflow) 50.8%	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o total inflo 0.9%
Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP (lbs)	component (lbs) 0.9483 0.9453 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs) 0.0009 0.1915 0.0006	underdrain (lbs) 0.9453 0.7613 Flow to underdrain (lbs)	(lbs) 0.0011 0.4665 0.0008 0.3708 Overflow (lbs) 0.0009 0.1855 0.0006	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP (lbs) 0.0009 0.1855 0.0006	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed (lbs)	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on BMP inflow)	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o total inflo
Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP (lbs) 0.3787 0.3049	component (lbs) 0.9483 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs) 0.0009 0.1915 0.0006 0.1563	underdrain (lbs) 0.9453 0.7613 Flow to underdrain (lbs) 0.3770	(lbs) 0.0011 0.4665 0.0008 0.3708 0.3708 0.0verflow (lbs) 0.0009 0.1855	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP (lbs) 0.0009 0.1855 0.0006 0.1474	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed (lbs) 0.1924 0.1569	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on BMP inflow) 50.8% 51.5%	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o total inflo 0.9% 0.7%
Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media	to BMP (lbs) 0.9483 0.7635 9.1688 41.8446 52.7252 Inflow to BMP (lbs) 0.3787	component (lbs) 0.9483 0.9453 0.7635 0.7613 	(lbs) 0.0019 0.4788 0.0014 0.3906 1.9367 8.5485 11.3577 Decay (lbs) 0.0009 0.1915 0.0006	underdrain (lbs) 0.9453 0.7613 Flow to underdrain (lbs) 0.3770	(lbs) 0.0011 0.4665 0.0008 0.3708 Overflow (lbs) 0.0009 0.1855 0.0006	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.0011 0.4665 0.0008 0.3708 7.2321 33.2961 41.3675 Outflow from BMP (lbs) 0.0009 0.1855 0.0006	(lbs) 0.4806 0.3919 1.9367 8.5485 11.3577 Load removed (lbs) 0.1924	BMP inflow) 50.7% 51.3% 21.1% 20.4% % removed (based on BMP inflow) 50.8%	total inflo 0.9% 0.7% 3.7% 16.2% 21.5% % remove (based o total inflo 0.9%
	Underdrain Swale + Media Underdrain Dtal rainfall (in) inage area (ac) all runoff coeff Components Swale + Media Underdrain Swale + Media Underdrain Components Swale + Media Underdrain Components Swale + Media Underdrain Swale + Media Components Swale + Media Underdrain Swale + Media Components Swale + Media Components Swale + Media	Underdrain Swale + Media 1.1566 Underdrain 13.8895 63.3889 79.8716 Datal rainfall (in) inage area (ac) 121.304 Datal rainfall (in) inage area (ac) 121.304 Components Inflow to BMP (10^6) Swale + Media 79.8716 Swale + Media 79.8716 Swale + Media 79.8716 Swale + Media 70.84,193 32,330,960 40,737,758 Components Inflow to BMP (lbs) Swale + Media 2.4022 Underdrain 28.8471 Swale + Media 2.4022 Underdrain (lbs) Swale + Media 1.35076 Gomponents Inflow to BMP (lbs) Swale + Media 1.1248 Underdrain 3.5076 Swale + Media 1.325076 Gomponents Inflow to BMP (lbs) Swale + Media 1.248 Underdrain 3.5076 Gomponents Inflow to BMP Underdrain 3.5076 <	Underdrain 1.4157 Swale + Media 1.1566 1.1566 Underdrain 1.1566 1.1415 13.8895 63.3889	Underdrain 1.4157 0.3178 Swale + Media 1.1566 0.0024 1.3.8895 0.0839 63.3889 0.3290 79.8716 0.9971 otal rainfall (in) 121.304 inage area (ac) 20.02 all runoff coeff 0.395 Components Inflow to BMP Inflow to component Decay (10^6) (10^6) (10^6) (10^6) Widerdrain 721.786 452,111 Swale + Media 728,736 721,786 452,111 Swale + Media 589,939 581,791 366,951 T7,084,193 2,179,804 32,330,960 9,663,062 Underdrain Components Inflow to BMP (lbs) (lbs) Wale + Media 2,9835 0.0049 2,973,84 1.4751 Swale + Media 2.4022 0.0036 2.9748 1.4751 Swale + Media 2.4022 0.0036 2.9748 1.4751 Swale + Media 1.3970 0.0441	Underdrain 1.4157 0.3178 1.1415 Swale + Media 1.1566 0.0024 1.1415 13.8895 0.0839	Underdrain 1.4157 0.3178 1.0979 Swale + Media 1.1566 0.0024 1.1415 0.0127 Underdrain 13.8895 0.0839 0.8805 0.0839 63.3889 0.3290 0.027 0.0024 0.0024 79.8716 0.9971 0.0023 0.0023 0.0023 components Inflow to BMP component (10°6) 0.9971 0.0023 0.0023 components Inflow to BMP component (10°6) 0.0041 0.0041 0.0041 swale + Media 732,665 732,665 95,600 721,785 1.320 Underdrain 721,786 452,111 269,674 581,791 36,6591 214,840 7,084,193 2,179,804 2,179,804 0.0037 214,840 1.1915 0.0027 Underdrain Underdrain (Ibs) (Ibs) (Ibs) (Ibs) 0.0027 Underdrain 2.9748 1.4751 0.0037 1.4997 0.0037 Swale + Media 2.4022 0.0036 <t< td=""><td>Underdrain 1.157 0.3178 1.0979 0.0000 Swale + Media 1.1566 0.0024 1.1415 0.0127 0.0000 Inderdrain 13.8895 1.0399 0.0000 0.0000 i3.8895 0.0339 0.0000 0.0000 79.8716 0.9971 0.0000 otal rainfall (in) 121.304 0.0000 0.0000 all runoff coeff 0.3395 0.0000 0.0000 Components Inflow to component (10^6) (10^6) (10^6) (10^6) Swale + Media 732,665 9,560 721,785 1,320 0 Underdrain 721,786 452,111 269,674 0 Swale + Media 732,665 9,560 721,785 1,220 0 Underdrain 589,393 7,172 581,791 214,840 0 32,30,960 9,663,062 0 0 0 0 32,30,960 9,663,062 0 0 0 0 Swale + Me</td><td>Underdrain Swale + Media 1.1566 0.03178 1.0979 0.0000 0.0000 Underdrain 1.1566 0.0224 1.1415 0.0127 0.0000 0.0000 13.8955 1.1415 0.0239 0.0000 0.0000 0.0000 63.889 0.3280 0.0000 0.0000 0.0000 0.0000 79.8716 0.9971 0.0000 0.0000 0.0000 0.0000 tal rainfall (in) 121.304 inage area (ac. 20.02 all runoff coeff 10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) 0</td><td>Underdrain 1.4157 0.3178 1.0797 0.0000 0.0</td><td>Underdrain </td><td>Inderdrain Intst7 0.378 1.0979 0.0000 1.0070 0.0000 0.00</td></t<>	Underdrain 1.157 0.3178 1.0979 0.0000 Swale + Media 1.1566 0.0024 1.1415 0.0127 0.0000 Inderdrain 13.8895 1.0399 0.0000 0.0000 i3.8895 0.0339 0.0000 0.0000 79.8716 0.9971 0.0000 otal rainfall (in) 121.304 0.0000 0.0000 all runoff coeff 0.3395 0.0000 0.0000 Components Inflow to component (10^6) (10^6) (10^6) (10^6) Swale + Media 732,665 9,560 721,785 1,320 0 Underdrain 721,786 452,111 269,674 0 Swale + Media 732,665 9,560 721,785 1,220 0 Underdrain 589,393 7,172 581,791 214,840 0 32,30,960 9,663,062 0 0 0 0 32,30,960 9,663,062 0 0 0 0 Swale + Me	Underdrain Swale + Media 1.1566 0.03178 1.0979 0.0000 0.0000 Underdrain 1.1566 0.0224 1.1415 0.0127 0.0000 0.0000 13.8955 1.1415 0.0239 0.0000 0.0000 0.0000 63.889 0.3280 0.0000 0.0000 0.0000 0.0000 79.8716 0.9971 0.0000 0.0000 0.0000 0.0000 tal rainfall (in) 121.304 inage area (ac. 20.02 all runoff coeff 10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) (10°6) 0	Underdrain 1.4157 0.3178 1.0797 0.0000 0.0	Underdrain	Inderdrain Intst7 0.378 1.0979 0.0000 1.0070 0.0000 0.00

Table E-11 2007-2010 Flows and Loads of Subbasin 70 BMP Performance Evaluation Modeling

Table E-12 Summary of Flow and Load Removed of Subbasin 70 BMP Performance Evaluation Modeling

FLOW															
-		_									1				
BMP			v removed (a					d (based on E					d (based on t		
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-yea
Bioswale N	0.0972	0.0658	0.0638	0.0940	0.3208	16.9%	58.3%	18.2%	22.9%	22.3%	0.3%	1.0%	0.3%	0.4%	0.4%
Bioswale S	0.0799	0.0540	0.0523	0.0773	0.2635	17.3%	59.4%	18.5%	23.4%	22.8%	0.3%	0.9%	0.3%	0.3%	0.3%
Extended detention N	0.0361	0.0082	0.0177	0.0218	0.0839	0.6%	0.8%	0.5%	0.6%	0.6%	0.1%	0.1%	0.1%	0.1%	0.19
Extended detention S	0.1413	0.0327	0.0687	0.0862	0.3289	0.6%	0.7%	0.4%	0.5%	0.5%	0.4%	0.5%	0.4%	0.4%	0.4%
Total	0.3544	0.1608	0.2025	0.2794	0.9971						1.1%	2.6%	1.0%	1.3%	1.2%
ВАСТ															
BMP		Log	d removed (1	006)			% romovor	d (based on E	MP inflow)			% removed	d (based on t	otal inflow)	
DIVIF	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-yea
Bioswale N	159,644	81,152	101,870	119,004	461,671	60.5%	80.2%	57.6%	62.3%	63.0%	1.1%	1.4%	1.0%	1.1%	1.19
Bioswale S	129,538	65,044	82,796	96,745	374,124	61.0%	79.8%	58.1%	62.9%	63.4%	0.9%	1.4%	0.8%	0.9%	0.9%
Extended detention N	750,333	227,777			2,179,809	29.4%	23.3%	32.5%	35.0%	30.8%	5.1%	4.0%	5.7%	6.1%	5.49
			556,562	645,138											
Extended detention S	3,324,642	993,104	2,478,130	2,867,181	9,663,058	28.6%	22.2%	31.8%	34.1%	29.9%	22.7%	17.6%	25.2%	27.0%	23.7
Total	4,364,157	1,367,078	3,219,358	3,728,068	12,678,661						29.8%	24.3%	32.7%	35.1%	31.19
ORGN															
BMP		Loa	ad removed	lbs)			% removed	d (based on E	3MP inflow)			% removed	d (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-yea
Bioswale N	0.4765	0.2918	0.3299	0.3818	1.4800	43.8%	68.4%	45.9%	50.5%	49.6%	0.8%	1.2%	0.8%	0.9%	0.9%
Bioswale S	0.3899	0.2375	0.2694	0.3112	1.2080	44.5%	69.2%	46.5%	51.2%	50.3%	0.6%	1.0%	0.7%	0.7%	0.79
Extended detention N	0.0625	0.0177	0.0498	0.0599	0.1900	0.6%	0.4%	0.7%	0.8%	0.7%	0.1%	0.1%	0.1%	0.1%	0.19
Extended detention S	0.2728	0.0759	0.2197	0.2638	0.8321	0.6%	0.4%	0.7%	0.8%	0.6%	0.5%	0.3%	0.5%	0.6%	0.5%
Total	1.2017	0.6228	0.8688	1.0168	3.7102	0.071			0.075		2.0%	2.6%	2.2%	2.4%	2.29
l'otal	1.2017	0.0220	0.0000	1.0100	5.7102			I			21070	2.070	2.270	2.175	2.27
NH3N															
BMP		Loa	ad removed	lbs)			% removed	d (based on E	BMP inflow)			% removed	d (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-yea
Bioswale N	0.2879	0.1229	0.1809	0.1951	0.7867	54.0%	79.6%	52.9%	53.0%	56.3%	1.0%	1.4%	1.0%	1.0%	1.0%
Bioswale S	0.2342		0.1463	0.1593	0.6387	54.5%						1.2%			0.8%
Bioswale S Extended detention N	0.2342	0.0989	0.1463 0.3583	0.1593	0.6387	54.5% 8.6%	79.6%	53.2%	53.7%	56.8%	0.8%	1.2% 0.9%	0.8%	0.8%	
Bioswale S Extended detention N Extended detention S	0.2342 0.4454 1.9740	0.0989 0.0781	0.1463 0.3583 1.6014	0.1593 0.4263 1.9109	0.6387 1.3082 5.8221	54.5% 8.6% 8.4%									0.8% 1.7% 7.5%
Extended detention N Extended detention S	0.4454 1.9740	0.0989 0.0781 0.3359	0.3583 1.6014	0.4263 1.9109	1.3082 5.8221	8.6%	79.6% 5.2%	53.2% 10.8%	53.7% 12.0%	56.8% 9.7%	0.8% 1.5% 6.7%	0.9% 3.9%	0.8% 1.9% 8.4%	0.8% 2.1% 9.4%	1.7% 7.5%
Extended detention N Extended detention S	0.4454	0.0989 0.0781	0.3583	0.4263	1.3082	8.6%	79.6% 5.2%	53.2% 10.8%	53.7% 12.0%	56.8% 9.7%	0.8% 1.5%	0.9%	0.8% 1.9%	0.8% 2.1%	1.7% 7.5%
Extended detention N Extended detention S Total	0.4454 1.9740	0.0989 0.0781 0.3359	0.3583 1.6014	0.4263 1.9109	1.3082 5.8221	8.6%	79.6% 5.2%	53.2% 10.8%	53.7% 12.0%	56.8% 9.7%	0.8% 1.5% 6.7%	0.9% 3.9%	0.8% 1.9% 8.4%	0.8% 2.1% 9.4%	1.7% 7.5%
Extended detention N	0.4454 1.9740	0.0989 0.0781 0.3359 0.6358	0.3583 1.6014	0.4263 1.9109 2.6916	1.3082 5.8221	8.6%	79.6% 5.2% 4.9%	53.2% 10.8%	53.7% 12.0% 11.8%	56.8% 9.7%	0.8% 1.5% 6.7%	0.9% 3.9% 7.4%	0.8% 1.9% 8.4%	0.8% 2.1% 9.4% 13.2%	1.7% 7.5%
Extended detention N Extended detention S Total NO3N	0.4454 1.9740	0.0989 0.0781 0.3359 0.6358	0.3583 1.6014 2.2868	0.4263 1.9109 2.6916	1.3082 5.8221	8.6%	79.6% 5.2% 4.9%	53.2% 10.8% 10.6%	53.7% 12.0% 11.8%	56.8% 9.7%	0.8% 1.5% 6.7%	0.9% 3.9% 7.4%	0.8% 1.9% 8.4% 12.0%	0.8% 2.1% 9.4% 13.2%	1.7% 7.5% 11.05
Extended detention N Extended detention S Total NO3N BMP	0.4454 1.9740 2.9416 2007	0.0989 0.0781 0.3359 0.6358 Loa 2008	0.3583 1.6014 2.2868 ad removed 2009	0.4263 1.9109 2.6916 lbs) 2010	1.3082 5.8221 8.5558 4-year	8.6% 8.4% 2007	79.6% 5.2% 4.9% % removed 2008	53.2% 10.8% 10.6% d (based on F 2009	53.7% 12.0% 11.8% 3MP inflow) 2010	56.8% 9.7% 9.4% 4-year	0.8% 1.5% 6.7% 9.9%	0.9% 3.9% 7.4% % removed 2008	0.8% 1.9% 8.4% 12.0% d (based on t 2009	0.8% 2.1% 9.4% 13.2% otal inflow) 2010	1.7%
Extended detention N Extended detention S Total NO3N BMP Bioswale N	0.4454 1.9740 2.9416 2007 0.4444	0.0989 0.0781 0.3359 0.6358 Loz 2008 0.2101	0.3583 1.6014 2.2868 ad removed 2009 0.2759	0.4263 1.9109 2.6916 lbs) 2010 0.3188	1.3082 5.8221 8.5558	8.6% 8.4%	79.6% 5.2% 4.9% % removed 2008 76.6%	53.2% 10.8% 10.6% d (based on B 2009 51.0%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6%	56.8% 9.7% 9.4% 4-year 55.7%	0.8% 1.5% 6.7% 9.9% 2007 0.9%	0.9% 3.9% 7.4%	0.8% 1.9% 8.4% 12.0%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0%	1.7% 7.5% 11.09 4-yea
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S	0.4454 1.9740 2.9416 2007 0.4444 0.3618	0.0989 0.0781 0.3359 0.6358 Loa 2008 0.2101 0.1692	0.3583 1.6014 2.2868 2009 0.2759 0.2245	0.4263 1.9109 2.6916 lbs) 2010 0.3188 0.2594	1.3082 5.8221 8.5558 4-year 1.2491 1.0148	8.6% 8.4% 2007 52.6% 53.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 76.6%	53.2% 10.8% 10.6% d (based on F 2009 51.0% 51.6%	53.7% 12.0% 11.8% BMP inflow) 2010 54.6% 55.2%	56.8% 9.7% 9.4% 4-year 55.7% 56.2%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1%	0.8% 1.9% 8.4% 12.0% d (based on t 2009 0.9% 0.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8%	1.7% 7.5% 11.0% 4-yea 1.0% 0.8%
Extended detention N Extended detention S Total NO3N BMP	0.4454 1.9740 2.9416 2007 0.4444	0.0989 0.0781 0.3359 0.6358 Loz 2008 0.2101	0.3583 1.6014 2.2868 ad removed 2009 0.2759	0.4263 1.9109 2.6916 lbs) 2010 0.3188	1.3082 5.8221 8.5558 4-year 1.2491	8.6% 8.4% 2007 52.6%	79.6% 5.2% 4.9% % removed 2008 76.6%	53.2% 10.8% 10.6% d (based on B 2009 51.0%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6%	56.8% 9.7% 9.4% 4-year 55.7%	0.8% 1.5% 6.7% 9.9% 2007 0.9%	0.9% 3.9% 7.4% % removed 2008 1.4%	0.8% 1.9% 8.4% 12.0% d (based on t 2009 0.9%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0%	1.7% 7.5% 11.0% 4-yea 1.0%
Extended detention N Extended detention S Total NO3N Bioswale N Bioswale N Extended detention N Extended detention S	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908	0.3583 1.6014 2.2868 2009 0.2759 0.2245 0.5168 2.3042	0.4263 1.9109 2.6916 lbs) 2010 0.3188 0.2594 0.6105 2.7206	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595	8.6% 8.4% 2007 52.6% 53.2% 8.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 76.6% 5.2%	53.2% 10.8% 10.6% d (based on F 2009 51.0% 51.6% 9.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9%	0.8% 1.9% 8.4% 12.0% (based on t 2009 0.9% 0.7% 1.7% 7.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4%	1.7% 7.5% 11.05 4-yea 1.0% 0.8% 1.5% 6.9%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373	0.3583 1.6014 2.2868 2009 0.2759 0.2245 0.5168	0.4263 1.9109 2.6916 lbs) 2010 0.3188 0.2594 0.6105	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315	8.6% 8.4% 2007 52.6% 53.2% 8.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 76.6% 5.2%	53.2% 10.8% 10.6% d (based on F 2009 51.0% 51.6% 9.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9%	0.8% 1.9% 8.4% 12.0% d (based on t 2009 0.9% 0.7% 1.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9%	1.7% 7.5% 11.05 4-yea 1.0% 0.8% 1.5% 6.9%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908	0.3583 1.6014 2.2868 2009 0.2759 0.2245 0.5168 2.3042	0.4263 1.9109 2.6916 lbs) 2010 0.3188 0.2594 0.6105 2.7206	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595	8.6% 8.4% 2007 52.6% 53.2% 8.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 76.6% 5.2%	53.2% 10.8% 10.6% d (based on F 2009 51.0% 51.6% 9.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9%	0.8% 1.9% 8.4% 12.0% (based on t 2009 0.9% 0.7% 1.7% 7.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4%	1.7% 7.5% 11.0% 4-yea 1.0% 0.8% 1.5%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908 1.1073	0.3583 1.6014 2.2868 2009 0.2759 0.2245 0.5168 2.3042	0.4263 1.9109 2.6916 0.3188 0.2594 0.6105 2.7206 3.9093	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595	8.6% 8.4% 2007 52.6% 53.2% 8.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 5.2% 4.9%	53.2% 10.8% 10.6% d (based on F 2009 51.0% 51.6% 9.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9% 7.3%	0.8% 1.9% 8.4% 12.0% (based on t 2009 0.9% 0.7% 1.7% 7.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1%	1.7% 7.5% 11.05 4-yea 1.0% 0.8% 1.5% 6.9%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908 1.1073	0.3583 1.6014 2.2868 2009 0.2759 0.2245 0.5168 2.3042 3.3213	0.4263 1.9109 2.6916 0.3188 0.2594 0.6105 2.7206 3.9093	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595	8.6% 8.4% 2007 52.6% 53.2% 8.2%	79.6% 5.2% 4.9% % removed 2008 76.6% 5.2% 4.9%	53.2% 10.8% 10.6% 51(based on B 2009 51.0% 51.6% 9.9% 9.7%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9% 7.3%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 7.7% 11.1%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1%	1.7% 7.5% 11.0% 4-yea 1.0% 0.8% 1.5% 6.9% 10.2%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale N Extended detention N Extended detention S Total ORGP BMP BMP BMP	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169	0.0989 0.0781 0.3359 0.6358 2008 0.2001 0.2001 0.1692 0.1373 0.5908 1.1073	0.3583 1.6014 2.2868 ad removed 2009 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed	0.4263 1.9109 2.6916 2010 0.3188 0.2594 0.6105 2.7206 3.9093 lbs)	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9%	79.6% 5.2% 4.9% % removed 2008 76.6% 76.6% 5.2% 4.9%	53.2% 10.8% 10.6% 2009 51.0% 51.6% 9.9% 9.7%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3%	0.8% 1.9% 8.4% 12.0% 12.0% 12.0% 1.209 0.9% 0.7% 1.7% 7.7% 11.1% 0 (based on t	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1%	1.7% 7.5% 11.0% 4-yea 1.0% 0.8% 1.5% 6.9% 10.2%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP BMP Bioswale N Bioswale N	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908 1.1073	0.3583 1.6014 2.2868 ad removed 1 2009 0.2759 0.2245 0.2245 0.2245 0.2245 0.2245 0.23042 3.3213 ad removed 1 2.009	0.4263 1.9109 2.6916 2010 0.3188 0.2594 0.6105 2.7206 3.9093 [bs] 2010	1.3082 5.8221 8.5558 4-year 1.2491 1.0145 8.5595 12.7548 4-year	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% % removed 2008	53.2% 10.8% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 3 (based on B	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% % removed 2008	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 7.7% 11.1% 3 (based on t 2009	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1% otal inflow) 2010	1.79 7.59 11.09 4-yea 1.09 0.89 1.59 6.99 10.29 4-yea 0.99
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP BMP Bioswale N Bioswale N Bioswale S	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567	0.0989 0.0781 0.3359 0.6358 2008 0.2101 0.1692 0.1373 0.5908 1.1073 Loc 2008 0.0927	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075	0.4263 1.9109 2.6916 (bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% % removed 2.008	53.2% 10.8% 10.6% 51.0% 51.6% 9.9% 9.7% 51.6% 9.9% 9.7% 51.6% 9.2009 47.1%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9% 7.3% % removed 2008 1.2%	0.8% 1.9% 8.4% 12.0% 4 (based on t 2009 0.9% 0.7% 1.7% 7.7% 11.1% 4 (based on t 2009 0.8%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1% otal inflow) 2210 0.9%	1.79 7.59 11.09 0.89 1.59 6.99 10.29 4-yea 0.99 0.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N	0.4454 1.9740 2.9416 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281	0.0989 0.0781 0.3359 0.6358 0.6358 0.2008 0.2101 0.1373 0.5908 1.1073 Loc 2008 0.927 0.0927	0.3583 1.6014 2.2868 ad removed 0.2759 0.2759 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.077 0.0877	0.4263 1.9109 2.6916 bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1236	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% % removed 2008 69.1% 69.8%	53.2% 10.8% 10.6% 51.0% 51.0% 51.0% 9.9% 9.7% 4 (based on F 2009 47.1%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.6% 3MP inflow) 2010 51.9% 52.5%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8% 0.7%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9% 7.3% % removed 2008 1.2% 1.0%	0.8% 1.9% 8.4% 12.0% 1 (based on t 2009 0.9% 0.7% 1.1% 1 (based on t 2009 0.9% 0.7%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 12.1% otal inflow) 2010 0.9% 0.8%	1.79 7.59 11.09 0.89 1.59 6.99 10.29 10.29 4-yea 0.99 0.79 3.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786	0.0989 0.0781 0.3559 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 Log 2008 0.0927 0.0754 0.0258	0.3583 1.6014 2.2868 ad removed 1 2009 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 1 2.009 0.1075 0.0877 0.4843	0.4263 1.9109 2.6916 lbs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 lbs) 2010 0.1236 0.1008 0.5679	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% 4.9% 4.9% 4.9% 5.2% 4.9% 4.9% 4.9% 4.9% 5.2% 4.9% 4.9% 4.9% 4.9% 4.9% 4.9% 4.9% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2	53.2% 10.8% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 4 (based on fl 2009 47.1% 2009 47.7% 21.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9% 52.5% 24.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8% 0.7% 3.5%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% % removed 2008 1.2% 1.0% 2.8%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 11.1% 4 (based on t 2009 0.8% 0.7% 3.8%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1% otal inflow) 2010 0.9% 0.8% 4.3%	1.79 7.59 11.0 0.89 1.59 6.99 10.2 4-yea 0.99 0.79 3.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928	0.0989 0.0781 0.3359 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.9927 0.0754 0.2054 0.2058 0.8954	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075 0.877 0.4843 2.1463	0.4263 1.9109 2.6916 (bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1028 0.5679 2.5140	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1%	79.6% 5.2% 4.9% 2008 76.6% 5.6% 5.6% 4.9% 4.9% 4.9% 2008 69.1% 5.2% 4.9%	53.2% 10.8% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 4 (based on fl 2009 47.1% 2009 47.7% 21.9%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9% 52.5% 24.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 6.3% 9.4% 2007 0.8% 0.7% 2007 0.8% 1.4%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% % removed 2008 1.2% 1.0%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 11.1% 3 (based on t 2009 0.8% 0.7% 11.1%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1%	1.79 7.59 11.09 1.09 0.89 1.59 6.99 10.29 10.29 10.29 0.79 3.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total Bioswale N Bioswale N Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S Total	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928	0.0989 0.0781 0.3359 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.9927 0.0754 0.2054 0.2058 0.8954	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075 0.877 0.4843 2.1463	0.4263 1.9109 2.6916 (bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1028 0.5679 2.5140	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1%	79.6% 5.2% 4.9% 2008 76.6% 5.6% 5.6% 4.9% 4.9% 4.9% 2008 69.1% 5.2% 4.9%	53.2% 10.8% 10.6% 51.0% 51.0% 51.6% 9.9% 9.7% 51.6% 9.7% 51.0% 51.	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9% 52.5% 24.8%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 6.3% 9.4% 2007 0.8% 0.7% 2007 0.8% 1.4%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% % removed 2008 1.2% 1.0%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 11.1% 3 (based on t 2009 0.8% 0.7% 11.1%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 8.4% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1%	1.79 7.59 11.0 0.89 1.59 6.99 10.2 4-yea 0.99 0.79 3.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total Bioswale N Bioswale N Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S Total	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928	0.0989 0.0781 0.3559 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.0927 0.0754 0.0927 0.0754 0.2058 0.8954 1.2693	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075 0.877 0.4843 2.1463	0.4263 1.9109 2.6916 2.010 0.3188 0.2594 0.6105 2.7206 3.9093 2010 0.1236 0.1008 2010 0.1236 0.1008 2.5140 3.3063	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% 4.9% 2008 69.1% 5.2% 4.9% 15.9%	53.2% 10.8% 10.6% 51.0% 51.0% 51.6% 9.9% 9.7% 51.6% 9.7% 51.0% 51.	53.7% 12.0% 11.8% SMP inflow) 2010 54.6% 55.2% 10.8% 10.6% SMP inflow) 2010 51.9% 52.5% 24.8% 24.0%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 6.3% 9.4% 2007 0.8% 0.7% 2007 0.8% 1.4%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% % removed 2008 1.2% 1.0% 2.8% 12.0% 17.0%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 11.1% 3 (based on t 2009 0.8% 0.7% 11.1%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 0.8% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1% 25.1%	1.79 7.55 11.0 0.85 1.55 6.99 10.2 4-ye 0.99 0.79 3.79
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale N Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S Total ORTHOP	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928	0.0989 0.0781 0.3559 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.0927 0.0754 0.0927 0.0754 0.2058 0.8954 1.2693	0.3583 1.6014 2.2868 ad removed 1 2009 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 1 2009 0.1075 0.0877 0.4843 2.1463 2.8259	0.4263 1.9109 2.6916 2.010 0.3188 0.2594 0.6105 2.7206 3.9093 2010 0.1236 0.1008 2010 0.1236 0.1008 2.5140 3.3063	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% 4.9% 2008 69.1% 5.2% 4.9% 15.9%	53.2% 10.8% 10.6% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 21.9% 21.3%	53.7% 12.0% 11.8% SMP inflow) 2010 54.6% 55.2% 10.8% 10.6% SMP inflow) 2010 51.9% 52.5% 24.8% 24.0%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 6.3% 9.4% 2007 0.8% 0.7% 2007 0.8% 1.4%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% % removed 2008 1.2% 1.0% 2.8% 12.0% 17.0%	0.8% 1.9% 8.4% 12.0% 3 (based on t 2009 0.9% 0.7% 1.7% 11.1% 4 (based on t 2009 0.8% 0.7% 3.8% 16.9% 22.3%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 0.8% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1% 25.1%	1.75 7.55 11.0 0.88 1.55 6.99 10.2 4-yee 0.95 0.75 3.75 16.2
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale N Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S Total ORTHOP BMP BMP BMP BMP BMP BMP BMP BMP BMP BM	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928 3.9561	0.0989 0.0781 0.3359 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.0927 0.0754 0.2058 0.8954 1.2693	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075 0.0877 0.4843 2.1463 2.8259 ad removed	0.4263 1.9109 2.6916 (bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1028 0.6109 2.5140 3.3063 (bs)	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485 11.3577	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1% 19.4%	79.6% 5.2% 4.9% 2008 76.6% 76.6% 5.2% 4.9% 4.9% 2008 69.1% 69.8% 15.9% 15.1%	53.2% 10.8% 10.6% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 9.7% 3 (based on f 2009 47.1% 47.7% 21.3% 21.3%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9% 52.5% 24.0% 3MP inflow)	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1% 20.4%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 6.3% 9.4% 2007 0.8% 1.4% 2007 0.8% 1.5% 2007 0.8% 1.5% 2007 0.8% 1.5% 2007 0.9% 1.5% 2007 0.9%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% % removed 2008 1.2% 1.0% 2.8% 12.0% 17.0%	0.8% 1.9% 8.4% 12.0% 12.0% 12.0% 12.0% 0.9% 0.7% 1.7% 11.1% 10.08% 10.09% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 12.0% 2009 0.9% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 11.1% 2009 0.8% 0.7% 0.8% 0.7% 0.8% 0.6% 0	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 1.9% 0.8% 12.1% otal inflow) 2010 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.1%	1.75 7.55 11.0 4-ye 1.00 0.85 1.55 6.95 10.2 4-ye 2.1.5 2.1.5
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale N Extended detention N Extended detention S Total ORGP Bioswale N Bioswale N Bioswale N Bioswale N Bioswale S Extended detention N Extended detention N Extended detention N Extended detention N Extended detention S Total ORTHOP BMP BMP BMP BMP BMP BMP BMP BMP BMP BM	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928 3.9561	0.0989 0.0781 0.3359 0.6358 0.6358 0.2008 0.2101 0.1973 0.5908 1.1073 0.5908 1.1073 0.0927 0.0754 0.2058 0.8954 1.2693	0.3583 1.6014 2.2868 ad removed 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 0.1075 0.0877 0.4843 2.1463 2.8259 ad removed 2009	0.4263 1.9109 2.6916 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1008 0.5679 2.5140 3.3063 (bs) 2.5140 2.5140 3.3063	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 4-year 4.5485 11.3577	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1% 19.4%	79.6% 5.2% 4.9% 2008 76.6% 5.2% 4.9% % removed 2008 69.1% 69.8% 15.9% 15.1%	53.2% 10.8% 10.6% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 4 (based on fl 2009 47.1% 47.7% 21.9% 21.3% 4 (based on fl 2009	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 2010 51.9% 52.5% 24.8% 24.0% 3MP inflow) 2010	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 20.4% 20.4%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8% 0.7% 3.5% 15.4% 20.4%	0.9% 3.9% 7.4% % removed 2008 1.4% 1.1% 0.9% 3.9% 7.3% % removed 2008 1.2% 1.0% 2.8% 12.0% 17.0%	0.8% 1.9% 8.4% 12.0% 1 (based on t 2009 0.9% 0.7% 1.7% 1.1% 1 (based on t 2009 0.9% 0.7% 1.1% 1 (based on t 2009 0.8% 0.7% 1.2% 1 (based on t 2009 0.8% 0.7% 1.2% 1 (based on t 2009 0.9% 0.7% 1.1% 1 (based on t 2009 0.9% 0.7% 1.1% 1 (based on t 2009 0.7% 1.1% 1 (based on t 2009 0.7% 1.1% 1 (based on t 2009 0.7% 1.1% 1 (based on t 2009 0.8% 0.7% 0.7% 1.1% 1 (based on t 2009 0.8% 0.7% 0.7% 0.7% 0.7% 1.1% 1.1% 0.8% 0.7% 0.8% 0.7% 0.7% 0.8% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.7% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.7% 0.6% 0.	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1% 25.1% otal inflow) 2010	1.79 7.59 11.0° 4-yee 0.89 10.2° 4-yee 0.99 0.79 21.5° 21.5°
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N Extended detention N Extended detention S Total ORTHOP BMP Bioswale N Bioswale N Bioswale N BMP Bioswale N BMP Bioswale N BMP BMP Bioswale N BMP	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2007 0.1567 0.1281 0.6786 2.9928 3.9561 2007 0.0644	0.0989 0.0781 0.3359 0.6358 0.6358 0.2101 0.1692 0.1373 0.5908 1.1073 0.0927 0.0927 0.0974 0.2058 0.8954 1.2693	0.3583 1.6014 2.2868 ad removed 1 2.099 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 1 2.099 0.1075 0.4843 2.1463 2.8259 ad removed 1 2.099 0.4843 2.1463 2.8259	0.4263 1.9109 2.6916 2.010 0.3188 0.2594 0.6105 2.7206 3.9093 2010 0.1208 0.1008 0.5679 2.5140 3.3063 [bs] 2010 0.0489	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485 11.3577	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 2007 44.9% 45.6% 20.1% 19.4% 2007 45.4%	79.6% 5.2% 4.9% 2008 76.6% 76.6% 5.2% 4.9% 2008 69.8% 5.2% 2008 69.8% 5.2%	53.2% 10.8% 10.6% 10	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.6% 3MP inflow) 2010 51.9% 24.8% 24.0% 3MP inflow) 2010 51.9%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.7% 8.7% 50.7% 51.3% 21.1% 20.4% 4-year 50.8%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8% 2007 0.8%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% 7.3% 7.3% 7.3% 2008 1.2% 1.0% 1.0% 1.0% 1.2%	0.8% 1.9% 8.4% 12.0% 1.7% 1.7% 1.1.1% 10.0% 1.0%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 12.1% otal inflow) 2010 0.9% 0.8% 4.3% 19.1% 25.1% otal inflow) 2010 0.9%	1.7% 7.5% 11.09 4-yea 1.0% 0.8% 1.5% 6.9%
Extended detention N Extended detention S Total NO3N BMP Bioswale N Bioswale S Extended detention N Extended detention S Total ORGP Bioswale N Bioswale S Extended detention N Extended detention S Total ORTHOP BMP Bioswale N Bioswale N Bioswale N Bioswale N Bioswale S Extended detention S Total	0.4454 1.9740 2.9416 2007 0.4444 0.3618 0.6669 2.9438 4.4169 2.9438 4.4169 2.007 0.1567 0.1281 0.6786 2.9928 3.9561	0.0989 0.0781 0.3559 0.6358 0.2008 0.2101 0.1692 0.1373 0.5908 1.1073 2008 0.0927 0.0754 0.2058 0.8954 1.2693 Loc 2008 0.3875 1.2693	0.3583 1.6014 2.2868 ad removed 2009 0.2759 0.2245 0.5168 2.3042 3.3213 ad removed 2009 0.1075 0.877 0.4843 2.1463 2.8259 ad removed 2009 0.4245 0.4843 2.1463 2.8259	0.4263 1.9109 2.6916 (bs) 2010 0.3188 0.2594 0.6105 2.7206 3.9093 (bs) 2010 0.1236 0.1028 0.5679 2.5140 3.3063 (bs) 2010 0.0489 2010 0.0399	1.3082 5.8221 8.5558 4-year 1.2491 1.0148 1.9315 8.5595 12.7548 4-year 0.4806 0.3919 1.9367 8.5485 11.3577 4-year 0.1924 0.1569	8.6% 8.4% 2007 52.6% 53.2% 8.2% 7.9% 7.9% 2007 44.9% 45.6% 20.1% 19.4% 2007 45.4% 46.1%	79.6% 5.2% 4.9% 2008 76.6% 76.6% 5.2% 4.9% 4.9% 4.9% 4.9% 5.2% 4.9% 5.2% 4.9% 5.2% 4.9% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2% 5.2	53.2% 10.8% 10.6% 10.6% 10.6% 2009 51.0% 51.6% 9.9% 9.7% 9.7% 40.009 47.1% 47.7% 21.3% 10.009 47.0% 47.0% 47.7%	53.7% 12.0% 11.8% 3MP inflow) 2010 54.6% 55.2% 10.8% 10.6% 3MP inflow) 2010 51.9% 52.5% 3MP inflow) 2010 51.9% 52.5%	56.8% 9.7% 9.4% 4-year 55.7% 56.2% 8.9% 8.7% 4-year 50.7% 51.3% 21.1% 20.4%	0.8% 1.5% 6.7% 9.9% 2007 0.9% 0.8% 1.4% 6.3% 9.4% 2007 0.8% 0.7% 2007 0.8% 0.7%	0.9% 3.9% 7.4% 2008 1.4% 1.1% 0.9% 3.9% 7.3% 7.3% 7.3% 7.3% 7.3% 2008 1.2% 1.0% 12.0% 12.0% 12.0%	0.8% 1.9% 8.4% 12.0% 12.0% 10.0% 10.0% 0.9% 0.7% 1.7% 11.1% 10.08% 0.7% 11.1% 10.08% 0.8% 10.08% 0.7% 10.08%	0.8% 2.1% 9.4% 13.2% otal inflow) 2010 1.0% 0.8% 8.4% 12.1% otal inflow) 2010 0.9% 0.8% otal inflow) 2010 0.9% 0.8%	1.79 7.59 11.00 4-yees 0.88 1.59 0.88 1.59 0.88 1.59 0.79 0.79 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.1.52 2.52 2

F. Subbasin 150 BMP Performance Evaluation Modeling

Site Description and Land Uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 150 is in the open area at the intersection of Larchmont Dr and Greenwich Blvd as shown in Exhibit F-1. The drainage area to the BMP site was delineated using ArcHydro and the DEM provided by the River Authority and determined to be 9.425 acres. As shown in Exhibit F-1, the land use in the delineated drainage area includes mostly single-family residential and some transportation. The land uses and their corresponding impervious cover percentages from the 2017 land use data provided by the River Authority are used to determine the pervious and impervious areas within the delineated area, as listed in Table F-1.

Land use	IC%	Pervious	Impervious	Total
		Area	Area	Area
		(ac)	(ac)	(ac)
Residential Low Density	25	0.425	0.141	0.566
Residential High Density	65	2.272	4.220	6.492
Transportation	90	0.237	2.130	2.367
TOTAL	68.9	2.934	6.491	9.425

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQV for the selected BMP site is: $1.5^{"}/12 \ge 0.6 \le 6.491$ ac $\ge 1.2 = 0.584$ ac-ft

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117).

Following evaluation of site conditions and discussion with the River Authority, a bioretention was proposed at this site and the layout is shown in Exhibit F-2. The BMP footprint is located to avoid large trees and existing facilities in the area. Based on size classification in the BMP Tool Database, this bioretention is considered "large." The WQV and surface area of the bioretention are shown in Table F-2.

BMP	WQV (ac-ft)	Surface area (ac)
Bioretention	0.6069	0.2748
Required	0.5840	

Note: Surface area is the area at the water level of the WQV.

Exhibit F-1 Delineated Drainage Area to Subbasin 150 BMP Site

Exhibit F-2 Proposed BMP Layout on Subbasin 150 Site

Modeling Bioretention in HSPF

A bioretention pond is set up in HSPF similar to a bioswale as shown in Exhibit D-1. The bioretention includes two components each represented by a HSPF RCHRES. The upper component includes the vegetation area and soil media. The lower component is an underdrain layer. Stormwater runoff entering a bioretention will flow through the soil media into an underdrain layer. Higher flow would overflow the bioretention. Based on the SSURGO database, the soil at this BMP site is classified as hydrologic soil group (HSG) D, which has a very low infiltration capacity. As a result, no infiltration is assumed to enter the soil below the underdrain layer. When the underdrain layer is full, treated runoff would leave the underdrain and outflow downstream. The total outflow is the sum of the overflow from the vegetation area and soil media and the outflow from the underdrain layer. Using data listed in Table B-2-1 of the River Authority's LID Manual, the soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table F-3 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

	Inflow		Outflow	
BMP	Geomean (#/dL)	Flow-weighted Geomean (#/dL)	Geomean (#/dL)	Flow-weighted Geomean (#/dL)
Bioretention	71,623	15,065	13,389	14,848

Table F-3 EC Concentrations of Subbasin 150 BMP Layouts Over 2007-2010

Tables F-4 to F-7 list the model output annual inflows and outflows of the bioretention in Subbasin 150 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed and the corresponding removal percentages (or BMP performance) are also listed. Table F-8 shows the same set of information but for the 4-year total. The loads removed and removal percentages calculated are summarized in Table F-9 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

Bioretention Pon Und total drainag overall r BMP Co Bioretention Pon BMP Co BMP Co Bioretention Pon	omponents nd + Media derdrain al rainfall (in) age area (ac) runoff coeff omponents omponents derdrain omponents nd + Media derdrain	Inflow to BMP (ac-ft) 17.3603 47.927 9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP (lbs)	Inflow to component (ac-ft) 17.3603 13.7039 Inflow to component (10^6) 7,456,312 5,692,313 Inflow to component	Evaporation (ac-ft) 0.0570 1.0989 Decay (10^6) 884,338 2,531,971	Flow to underlayer (ac-ft) 13.7039 Flow to underlayer (10^6) 5,692,313	Overflow (ac-ft) 3.5994 12.5730 Overflow (10^6) 879,672 3,160,339	Start storage (ac-ft) 0.0000 0.0000 Start storage (10^6) 0	End storage (ac-ft) 0.0000 0.0320 End storage (10^6) 0	Outflow from BMP (ac-ft) 16.1724 Outflow from BMP (10^6)	Flow removed (ac-ft) 1.1559 Load removed (10^6)	Remova
Und total drainag overall ri BMP Co bioretention Pon BMP Co bioretention Co bioretention Pon	derdrain al rainfall (in) age area (ac) runoff coeff omponents nd + Media derdrain omponents nd + Media	(ac-ft) 17.3603 47.927 9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	(ac-ft) 17.3603 13.7039 Inflow to component (10^6) 7,456,312 5,692,313 Inflow to	0.0570 1.0989 Decay (10^6) 884,338 2,531,971	(ac-ft) 13.7039 Flow to underlayer (10^6)	3.5994 12.5730 Overflow (10^6) 879,672	(ac-ft) 0.0000 0.0000 Start storage (10^6) 0	(ac-ft) 0.0000 0.0320 End storage (10^6)	(ac-ft) 16.1724 Outflow from BMP (10^6)	(ac-ft) 1.1559 Load removed (10^6)	
Und total drainag overall ri BMP Co Bioretention Pon BMP Co BMP Co Bioretention Pon	derdrain al rainfall (in) age area (ac) runoff coeff omponents nd + Media derdrain omponents nd + Media	17.3603 47.927 9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	17.3603 13.7039 Inflow to component (10^6) 7,456,312 5,692,313 Inflow to	0.0570 1.0989 Decay (10^6) 884,338 2,531,971	13.7039 Flow to underlayer (10^6)	3.5994 12.5730 Overflow (10^6) 879,672	0.0000 0.0000 Start storage (10^6) 0	0.0000 0.0320 End storage (10^6)	0utflow from BMP (10^6)	Load removed (10^6)	
Und total drainag overall ri BMP Co Bioretention Pon BMP Co BMP Co Bioretention Pon	derdrain al rainfall (in) age area (ac) runoff coeff omponents nd + Media derdrain omponents nd + Media	47.927 9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	13.7039 Inflow to component (10^6) 7,456,312 5,692,313 Inflow to	1.0989 Decay (10^6) 884,338 2,531,971	Flow to underlayer (10^6)	12.5730 Overflow (10^6) 879,672	0.0000 Start storage (10^6) 0	0.0320 End storage (10^6)	Outflow from BMP (10^6)	Load removed (10^6)	
total drainag overall ri BMP Co Bioretention Pon BMP Co BMP Co Bioretention Pon	al rainfall (in) age area (ac) runoff coeff omponents nd + Media derdrain omponents nd + Media	9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	Inflow to component (10^6) 7,456,312 5,692,313 Inflow to	Decay (10^6) 884,338 2,531,971	underlayer (10^6)	Overflow (10^6) 879,672	Start storage (10^6) 0	End storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
drainag overall ri BMP Co Bioretention Pon- Und DRGN Co BMP Co Bioretention Pon-	age area (ac) runoff coeff omponents nd + Media (derdrain omponents nd + Media	9.425 0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
overall r BMP Co Bioretention Pon Und DRGN BMP Co Bioretention Pon	runoff coeff omponents nd + Media derdrain omponents nd + Media	0.461 Inflow to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
BMP Co Bioretention Pon Und DRGN BMP Co Bioretention Pon	omponents nd + Media derdrain omponents nd + Media	Inflow to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
Bioretention Pon Und DRGN BMP Co Bioretention Pon	nd + Media derdrain omponents nd + Media	to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
BMP Co Bioretention Pon Und DRGN BMP Co Bioretention Pon	nd + Media derdrain omponents nd + Media	to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
Bioretention Pon Und DRGN BMP Co Bioretention Pon	nd + Media derdrain omponents nd + Media	to BMP (10^6) 7,456,312 Inflow to BMP	component (10^6) 7,456,312 5,692,313 Inflow to	(10^6) 884,338 2,531,971	underlayer (10^6)	(10^6) 879,672	storage (10^6) 0	storage (10^6)	from BMP (10^6)	removed (10^6)	Remova
DRGN BMP Co Bioretention Pon	derdrain omponents nd + Media	(10^6) 7,456,312 Inflow to BMP	(10^6) 7,456,312 5,692,313 Inflow to	884,338 2,531,971	(10^6)	879,672	(10^6) 0	(10^6)	(10^6)	(10^6)	
DRGN BMP Co Bioretention Pon	derdrain omponents nd + Media	7,456,312 Inflow to BMP	7,456,312 5,692,313 Inflow to	884,338 2,531,971	. ,	879,672	0		. ,		
DRGN BMP Co Bioretention Pon	derdrain omponents nd + Media	Inflow to BMP	5,692,313 Inflow to	2,531,971	5,692,313			0			
DRGN BMP Co Bioretention Pon	omponents nd + Media	to BMP	Inflow to			3,160,339			4,040,012	3,416,300	45.8%
BMP Co	nd + Media	to BMP					0	0			
BMP Co Bioretention Pon	nd + Media	to BMP									
Bioretention Pon	nd + Media	to BMP							T		1
			component	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		(lbs)			underlayer		storage	storage	from BMP	removed	
			(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Und	derdrain	30.6679	30.6679	0.6611	27.0851	2.9219	0.0000	0.0000	22.1780	8.4888	27.7%
	acranan		27.0851	7.8279		19.2562	0.0000	0.0010			
NH3N		1.01.	1.0.	Duri		0	<u>()</u>	5	0.10	11	D
BMP Co	omponents	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	(11)	underlayer	(11)	storage	storage	from BMP	removed	
	nd + Media	(lbs) 15.3304	(lbs) 15.3304	(lbs)	(lbs) 9.9835	(lbs) 2.4695	(lbs) 0.0000	(lbs) 0.0000	(lbs)	(lbs) 7.6427	49.9%
	iderdrain	15.3304	9.9835	2.8775 4.7653	9.9835	5.2182	0.0000	0.0000	7.6877	7.6427	49.9%
Ulla	uerurain		9.9655	4.7055		5.2162	0.0000	0.0000			
NO3N											
	omponents	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
	omponents	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	Remova
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention Pon	nd + Media	24.2608	24.2608	3.4970	17.2433	3.5204	0.0000	0.0000	13.0339	11.2269	46.3%
	derdrain	2	17.2433	7.7298	1712 100	9.5135	0.0000	0.0000	10.0000	11.2205	101070
0114	derdram		1712100	11/250		515155	0.0000	0.0000			
ORGP											
	omponents	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention Pon	nd + Media	9.8741	9.8741	0.9869	8.0429	0.8442	0.0000	0.0000	5.1725	4.7016	47.6%
Und	derdrain	ľ	8.0429	3.7146		4.3283	0.0000	0.0000			
	•										
ORTHOP											
BMP Co	omponents	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention Pon	nd + Media	4.0194	4.0194	0.4100	3.2529	0.3565	0.0000	0.0000	2.1175	1.9019	47.3%
Und	derdrain		3.2529	1.4919		1.7611	0.0000	0.0000	1		

Table F-4 2007 Flows and Loads of Subbasin 150 BMP Performance Evaluation Modeling

FLOW											
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	3.6617	3.6617	0.0095	3.5437	0.1085	0.0000	0.0000	2.8996	0.7942	21.5%
	Underdrain		3.5437	0.7847		2.7911	0.0320	0.0000			
	total rainfall (in)	14.221									
dr	rainage area (ac)	9.425									
ove	erall runoff coeff	0.328									
BACT									1		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	2,608,504	2,608,504	206,117	2,343,044	59,335	0	0	1,166,692	1,441,812	55.3%
	Underdrain		2,343,044	1,235,686		1,107,356	0	0			
ORGN	1		1	1				1	1	1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	10.8691	10.8691	0.1390	10.5305	0.1996	0.0000	0.0000	6.5964	4.2738	39.3%
	Underdrain		10.5305	4.1348		6.3968	0.0010	0.0000			
NH3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	4.1530	4.1530	0.5350	3.5385	0.0795	0.0000	0.0000	1.6896	2.4634	59.3%
	Underdrain		3.5385	1.9284		1.6101	0.0000	0.0000			
				•							
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	7.4485	7.4485	0.6943	6.5952	0.1589	0.0000	0.0000	3.2332	4.2152	56.6%
	Underdrain		6.5952	3.5209		3.0743	0.0000	0.0000	1		
			•		•	•	•	•	•	•	
ORGP									1		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	3.4117	3.4117	0.2196	3.1316	0.0606	0.0000	0.0000	1.4644	1.9473	57.1%
	Underdrain		3.1316	1.7277		1.4039	0.0000	0.0000			
				-	-	-					
ORTHOP											
ORTHOP BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
	Components	Inflow to BMP	Inflow to component	Decay	Flow to underlayer	Overflow	Start storage	End storage	Outflow from BMP	Load removed	Remova
	Components			Decay (lbs)		Overflow (lbs)					Remova
ORTHOP BMP Bioretention	Components Pond + Media	to BMP	component		underlayer		storage	storage	from BMP	removed	Remova

Table F-5 2008 Flows and Loads of Subbasin 150 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component		underlayer	-	storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	10.8434	10.8434	0.0275	8.4555	2.3605	0.0000	0.0000	9.9275	0.7671	7.1%
	Underdrain		8.4555	0.7398		7.5669	0.0000	0.1488			
	total rainfall (in)	31.205									
	ainage area (ac) rall runoff coeff	9.425 0.442									
over	rail runorr coerr	0.442									
ВАСТ											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	4,999,873	4,999,873	682,932	4,029,173	287,767	0	0	2,532,057	2,458,906	49.2%
	Underdrain		4,029,173	1,775,563		2,244,290	0	8,910			
ODCN											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
DIVIP	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	Remova
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	20.2111	20.2111	0.4694	18.9076	0.8341	0.0000	0.0000	13.3830	6.4336	31.8%
Siorecention	Underdrain	20.2111	18.9076	5.9611	10.0070	12.5489	0.0000	0.3944	10.0000	011000	51.070
									1		
NH3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	9.6925	9.6925	2.0049	6.1024	1.5853	0.0000	0.0000	4.7990	4.8904	50.5%
	Underdrain		6.1024	2.8853		3.2137	0.0000	0.0032			
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
5111	componento	to BMP	component	Decay	underlayer	oremon	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	15.7922	15.7922	2.4462	11.4914	1.8546	0.0000	0.0000	8.1685	7.6068	48.2%
	Underdrain		11.4914	5.1596		6.3140	0.0000	0.0169			
ORGP	T							1	1		1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load .	Remova
		to BMP	component	<i>(</i> 1 ,)	underlayer	<i>(</i> 1 ,)	storage	storage	from BMP	removed	
Dia nata atir	Danal I Madi	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	50.0%
Bioretention	Pond + Media Underdrain	6.4207	6.4207 5.4830	0.7009 2.5455	5.4830	0.2368 2.9213	0.0000	0.0000	3.1581	3.2471	50.6%
	Underdrain		5.4850	2.5455		2.9215	0.0000	0.0155			
ORTHOP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
	Pond + Media	2.5550	2.5550	0.2784	2.1728	0.1038	0.0000	0.0000	1.2614	1.2874	50.4%
Bioretention	FUTIU + IVIEUIA					1.1576	0.0000	0.0062	-	1	1

Table F-6 2009 Flows and Loads of Subbasin 150 BMP Performance Evaluation Modeling

ioretention Por Un tota draina overall BMP Co ioretention Por Un	Components ond + Media nderdrain al rainfall (in) age area (ac) I runoff coeff Components	Inflow to BMP (ac-ft) 14.5471 37.961 9.425 0.488 Inflow	Inflow to component (ac-ft) 14.5471 10.5707	Evaporation (ac-ft) 0.0440 1.0289	Flow to underlayer (ac-ft) 10.5707	Overflow (ac-ft) 3.9323 9.6395	Start storage (ac-ft) 0.0000 0.1488	End storage (ac-ft) 0.0000	Outflow from BMP (ac-ft) 13.5718	Flow removed (ac-ft) 1.0730	Remova
Un tota draina overall BMP Co ioretention Por	nderdrain al rainfall (in) age area (ac) I runoff coeff	(ac-ft) 14.5471 37.961 9.425 0.488	(ac-ft) 14.5471	0.0440	(ac-ft)	3.9323	(ac-ft) 0.0000	(ac-ft) 0.0000	(ac-ft)	(ac-ft)	7.3%
Un tota draina overall BMP Co Sioretention Por Un	nderdrain al rainfall (in) age area (ac) I runoff coeff	14.5471 37.961 9.425 0.488	14.5471	0.0440		3.9323	0.0000	0.0000			7.3%
Un tota draina overall BMP Co Sioretention Por Un	nderdrain al rainfall (in) age area (ac) I runoff coeff	37.961 9.425 0.488			10.5707				15.5710	1.0750	
tota draina overall BMP Co Bioretention Pou	al rainfall (in) age area (ac) I runoff coeff	9.425 0.488	10.3707	1.0285		9.0395			1		
draina overall BMP Co Bioretention Por Un	age area (ac) runoff coeff	9.425 0.488					0.1400	0.0511			
Overall BMP Co Bioretention Poi	runoff coeff	0.488									
BACT BMP Co Bioretention Pon Un											
BMP Co Bioretention Por Un	Components	Inflow									
BMP Co Bioretention Por Un	Components	Inflow									
Un		IIIIOW	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
Un		to BMP	component	-	underlayer		storage	storage	from BMP	removed	
Un		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Un	ond + Media	5,731,255	5,731,255	958,315	3,861,535	911,399	0	0	3,176,780	2,559,532	44.6%
	nderdrain	-, - ,	3,861,535	1,601,445	-,,	2,265,381	8,910	3,853	-, , ,	,,.	
	•										
DRGN		161 -	lafla 1	Dett	Class 1	Quart	Chool d	r - I	0.40	1	Datio
BMP Co	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	(11)	underlayer	(11)	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
	ond + Media	21.7682	21.7682	0.6971	18.0343	3.0368	0.0000	0.0000	15.9340	5.8631	26.5%
Un	nderdrain		18.0343	5.1662		12.8972	0.3944	0.3655			
NH3N											
BMP Co	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
	ond + Media	11.5825	11.5825	2.7742	6.0990	2.7093	0.0000	0.0000	6.0311	5.5537	47.9%
Un	nderdrain		6.0990	2.7797		3.3218	0.0032	0.0009			
BMP Co	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
5.0.0	, on ponents	to BMP	component	Decay	underlayer	01011011	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention Por	ond + Media	18.0012	18.0012	3.4398	11.1173	3.4441	0.0000	0.0000	9.8346	8.1768	45.4%
	nderdrain	10.0012	11.1173	4.7375	11.11/0	6.3905	0.0169	0.0067	510510	012/00	151170
	amnar	Inflam	Infloreta	Dorrig	Flowte	Quartin	C+	End	0+fl	ا م م	Dorres
BMP Co	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	(16.5)	underlayer	(16.5)	storage	storage	from BMP	removed	
	ond + Media	(lbs)	(lbs)	(lbs) 0.9672	(lbs)	(lbs) 0.8537	(lbs)	(lbs)	(lbs)	(lbs)	46.00/
	nderdrain	6.9072	6.9072 5.0864	2.2807	5.0864	2.8141	0.0000	0.0000	3.6678	3.2475	46.9%
01	luerurain		5.0604	2.2607		2.0141	0.0155	0.0075			
ORTHOP											
BMP Co	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention Por	ond + Media	2.7523	2.7523	0.3875	2.0141	0.3507	0.0000	0.0000	1.4663	1.2892	46.7%
	nderdrain		2.0141	0.9019		1.1156	0.0062	0.0029	1		

Table F-7 2010 Flows and Loads of Subbasin 150 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	46.4126	46.4126	0.1380	36.2738	10.0007	0.0000	0.0000	42.5713	3.7902	8.2%
	Underdrain		36.2738	3.6522		32.5706	0.0000	0.0511			
	**** :	101 014									
	total rainfall (in) rainage area (ac)	131.314 9.425									
	erall runoff coeff	0.450									
ВАСТ			1			1		1	1		1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	(underlayer	(storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	17 50/
Bioretention	Pond + Media Underdrain	20,795,944	20,795,944 15,926,065	2,731,702 7,144,665	15,926,065	2,138,174 8,777,366	0	0 3,853	10,915,540	9,876,551	47.5%
	Underdrain		15,920,005	7,144,005		8,777,500	U	3,033			
ORGN											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	83.5163	83.5163	1.9665	74.5575	6.9924	0.0000	0.0000	58.0914	25.0594	30.0%
	Underdrain		74.5576	23.0900		51.0990	0.0000	0.3655			
NH3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	40.7583	40.7583	8.1915	25.7234	6.8434	0.0000	0.0000	20.2073	20.5502	50.4%
	Underdrain		25.7234	12.3586		13.3638	0.0000	0.0009			
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	65.5026	65.5026	10.0773	46.4472	8.9779	0.0000	0.0000	34.2702	31.2257	47.7%
	Underdrain		46.4472	21.1478		25.2923	0.0000	0.0067			
ORGP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	26.6137	26.6137	2.8746	21.7438	1.9952	0.0000	0.0000	13.4629	13.1435	49.4%
	Underdrain		21.7438	10.2685		11.4676	0.0000	0.0073			
ORTHOP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	10.6773	10.6773	1.1618	8.6806	0.8349	0.0000	0.0000	5.4233	5.2511	49.2%
	Underdrain		8.6806	4.0892		4.5884	0.0000	0.0029	1		1

Table F-8 2007-2010 Flows and Loads of Subbasin 150 BMP Performance Evaluation Modeling

					8					
Constituent		Flow/L	oad remove	d (ac-ft)				% removed		
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Flow	1.1559	0.7942	0.7671	1.0730	3.7902	6.7%	21.5%	7.1%	7.3%	8.2%
BACT	3,416,300	1,441,812	2,458,906	2,559,532	9,876,551	45.8%	55.3%	49.2%	44.6%	47.5%
ORGN	8.4888	4.2738	6.4336	5.8631	25.0594	27.7%	39.3%	31.8%	26.5%	30.0%
NH3N	7.6427	2.4634	4.8904	5.5537	20.5502	49.9%	59.3%	50.5%	47.9%	50.4%
NO3N	11.2269	4.2152	7.6068	8.1768	31.2257	46.3%	56.6%	48.2%	45.4%	47.7%
ORGP	4.7016	1.9473	3.2471	3.2475	13.1435	47.6%	57.1%	50.6%	46.9%	49.4%
ORTHOP	1.9019	0.7726	1.2874	1.2892	5.2511	47.3%	57.2%	50.4%	46.7%	49.2%

Table F-9 Summary of Flow and Load Removed of Subbasin 150 BMP Performance Evaluation Modeling

G. Subbasin 260 BMP Performance Evaluation Modeling

Site Description and Land uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 260 is Monterrey Park bounded by Fortuna St to the north and W. Commerce St to the south as shown in Exhibit G-1. Zarzamora Creek is on the east side of the park. Existing facilities in the park include soccer fields, tennis courts, and baseball fields.

Following evaluation of site conditions including floodplain boundary and discussion with the River Authority, a bioretention was proposed at the north end of the park (Bioretention N) and another at the south end (Bioretention S) as shown in Exhibits G-1 and G-2. Bioretention S is located in two open areas of the parking lot. The two areas were modeled as one bioretention in the model. Based on the size classification in the BMP Tool Database, Bioretention N was considered "average" while Bioretention S was considered "large."

The drainage area to each bioretention was delineated using Arc Hydro and the DEM data provided by the River Authority. The areas were determined to be 5.442 acres for Bioretention N and 21.784 acres for Bioretention S. As shown in Exhibit G-1, the land use in the delineated drainage area includes mostly single-family residential, some transportation, and some commercial.

The land uses and their corresponding impervious cover percentages from the 2017 land use data provided by the River Authority were used to determine the pervious (Per.) and impervious (Imp.) areas within the delineated drainage areas, as listed in Table G-1.

Land use	IC%	Bi	ioretention	N	IC%	В	ioretention	S
		Per.	Imp.	Total		Per.	Imp.	Total
		Area	Area	Area		Area	Area	Area
		(ac)	(ac)	(ac)		(ac)	(ac)	(ac)
Residential Medium Density	38	2.396	1.468	3.864	38	6.625	4.061	10.686
Commercial	90	0.067	0.600	0.667	90	0.712	6.409	7.121
Transportation	90	0.091	0.820	0.911	90	0.397	3.580	3.977
TOTAL	53.1	2.554	2.888	5.442	64.5	7.734	14.050	21.784

Table G-1 Land uses of Subbasin 260 BMP Sites

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQVs for the selected BMP sites are: $1.5^{"}/12 \ge 0.6 \ge 2.888$ ac $\ge 1.2 = 0.260$ ac-ft for Bioretention N $1.5^{"}/12 \ge 0.6 \ge 1.2 = 1.264$ ac-ft for Bioretention S

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The water quality volume and surface area of each BMP are shown in Table G-2.

Table 0-2 Water Quality Vol	unic and Surface Area of	Subbasili 200 Divit Sik
BMP	WQV (ac-ft)	Surface area (ac)
Bioretention N	0.2850	0.1328
Bioretention S	1.3969	0.6342
Total	1.6819	
Required	1.5240	
	1 0.1 *******	

Table G-2 Water Quality Volume and Surface Area of Subbasin 260 BMP Site

Note: Surface area is the area at the water level of the WQV.

Exhibit G-1 Delineated Drainage Area to Subbasin 260 BMP Site

Exhibit G-2 Proposed BMP Layout on Subbasin 260 Site

Modeling Bioretention in HSPF

Refer to the discussion in Section F.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table G-3 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

	Inf	low	Out	flow
BMP	Geomean (#/dL)	Flow-weighted Geomean (#/dL)	Geomean (#/dL)	Flow-weighted Geomean (#/dL)
Bioretention N	64,743	14,316	12,120	13,678
Bioretention S	55,429	11,945	10,434	11,542
Overall	57,020	12,355	10,611	11,908

Table G-3 EC Concentrations of Subbasin 260 BMP Layouts Over 2007-2010

Tables G-4 to G-7 list the model output annual inflows and outflows of the bioretention in Subbasin 150 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed and the corresponding removal percentages (or BMP performance) are also listed. Table G-8 shows the same set of information but for the 4-year total.

The constituent removal percentages were calculated in two approach – based on individual input to a BMP and based on the total input coming from the total drainage area. The loads removed and removal percentages calculated are summarized in Table G-9 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

The differences in the removal percentages based on individual input to a BMP for some of the nutrients are due to different decay coefficients for average and large bioretention from the BMP Tool Database.

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
Bioretention N	Pond + Media	7.7448	7.7448	0.0257	6.2048	1.5144	0.0000	0.0000	7.1938	0.5389	7.0%	1.2%
	Underdrain		6.2048	0.5132		5.6794	0.0000	0.0121				
Bioretention S	Pond + Media	37.5925	37.5925	0.1258	30.2527	7.2138	0.0000	0.0000	34.8824	2.6541	7.1%	5.9%
	Underdrain		30.2527	2.5281		27.6686	0.0000	0.0561				
Total		45.3374		3.1929			0.0000	0.0682	42.0762	3.1930		7.0%
	total rainfall (in)	47.927										
	Irainage area (ac)	27.228										
ov	erall runoff coeff	0.417										
BACT					5 1 · ·		a		0.10			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP (10^6)	component (10^6)	(10^6)	underlayer (10^6)	(10^6)	storage (100C)	storage	from BMP (10^6)	removed (10^6)	(based on BMP inflow)	(based or total inflov
Piorotoption N	Pond + Media			. ,			(10^6)	(10^6)	1,618,106		46.5%	9.1%
Bioretention N	Underdrain	3,026,753	3,026,753 2,336,001	358,878 1,049,763	2,336,001	331,868 1,286,238	0	0	1,018,100	1,408,647	40.5%	9.1%
Bioretention S	Pond + Media	12,505,333	12,505,333	1,049,703	9,715,906	1,280,258	0	0	6,644,967	5,860,367	46.9%	37.7%
BIOTELETICIOTI 3	Underdrain	12,505,555	9,715,906	4,387,209	9,713,900	5,328,709	0	0	0,044,907	5,600,507	40.9%	57.770
Total	Underdram	15,532,086	5,715,500	7,269,040		5,528,705	0	0	8,263,073	7,269,013		46.8%
TOTAL		15,552,080		7,209,040			0	0	8,203,073	7,209,015		40.870
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Divin	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	13.8526	13.8526	0.2964	12.3187	1.2376	0.0000	0.0000	9.9379	3.9135	28.3%	4.9%
	Underdrain		12.3187	3.6171		8.7003	0.0000	0.0013	1			
Bioretention S	Pond + Media	66.8137	66.8137	1.4090	59.7530	5.6517	0.0000	0.0000	47.7132	19.0926	28.6%	23.7%
	Underdrain		59.7530	17.6836		42.0616	0.0000	0.0079	1			
Total		80.6664		23.0060			0.0000	0.0092	57.6511	23.0061		28.5%
			1								1	
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	6.8778	6.8778	0.7640	5.0125	1.1014	0.0000	0.0000	4.1600	2.7178	39.5%	6.7%
	Underdrain		5.0125	1.9538		3.0586	0.0000	0.0000	1			
Bioretention S	Pond + Media	33.4247	33.4247	6.1845	22.3587	4.8815	0.0000	0.0000	16.4115	17.0132	50.9%	42.2%
	Underdrain		22.3587	10.8287		11.5300	0.0000	0.0000	1			
Total		40.3025		19.7310			0.0000	0.0000	20.5715	19.7310		49.0%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention N	Pond + Media	10.8572	10.8572	0.8907	8.4343	1.5322	0.0000	0.0000	6.8348	4.0224	37.0%	6.3%
	Underdrain		8.4343	3.1318		5.3026	0.0000	0.0000				
Bioretention S	Pond + Media	52.8264	52.8264	7.5314	38.4149	6.8800	0.0000	0.0000	27.8122	25.0142	47.4%	39.3%
	Underdrain		38.4149	17.4827		20.9322	0.0000	0.0000				
Total		63.6837		29.0366			0.0000	0.0000	34.6470	29.0367		45.6%
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	4.4377	4.4377	0.1081	3.9450	0.3846	0.0000	0.0000	3.1204	1.3173	29.7%	5.1%
	Underdrain		3.9450	1.2090		2.7358	0.0000	0.0000				
Bioretention S	Pond + Media	21.4158	21.4158	2.0948	17.7041	1.6169	0.0000	0.0000	11.0083	10.4075	48.6%	40.3%
	Underdrain		17.7041	8.3127		9.3915	0.0000	0.0000				
Total		25.8535		11.7245			0.0000	0.0000	14.1288	11.7247		45.4%
ORTHOP	L Comment	16	1-61-		Flag. 1	0	Ch :		0.45		0(0(
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
	Pond + Media	1.8292	1.8292	0.0460	1.6125	0.1708	0.0000	0.0000	1.2940	0.5352	29.3%	5.1%
Bioretention N				0 / 00 1		1.1232	0.0000	0.0000	1	1	1	1
	Underdrain		1.6125	0.4891							40.555	00
Bioretention N Bioretention S	Pond + Media	8.7415	8.7415	0.8742	7.1730	0.6943	0.0000	0.0000	4.5238	4.2176	48.2%	39.9%
		8.7415 10.5707			7.1730				4.5238 5.8179	4.2176 4.7528	48.2%	39.9% 45.0%

Table G-4 2007 Flows and Loads of Subbasin 260 BMP Performance Evaluation Modeling

BMP	Componente	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% romoved	% romoved
	Components	Inflow		Evaporation	Flow to	Overflow	Start	End		Flow	% removed	% removed
		to BMP	component	((+))	underlayer	(6)	storage	storage	from BMP	removed	(based on	(based on
N	Devel - Mardia	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioretention N	Pond + Media	1.6296	1.6296	0.0040	1.5917	0.0339	0.0000	0.0000	1.2753	0.3663	22.3%	3.8%
Distantion C	Underdrain	7.0251	1.5917	0.3623	7 75 24	1.2415	0.0121	0.0000	C 1820	1 7082	22.5%	10 70/
Bioretention S	Pond + Media	7.9251	7.9251	0.0183	7.7534	0.1534	0.0000	0.0000	6.1830	1.7982	22.5%	18.7%
	Underdrain		7.7534	1.7798		6.0297	0.0561	0.0000				
Total		9.5547		2.1644			0.0682	0.0000	7.4584	2.1645		22.5%
	total rainfall (in)	14.221										
	rainage area (ac)	27.228										
ove	erall runoff coeff	0.296										
BACT					-1							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	(underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention N	Pond + Media	1,047,310	1,047,310	81,356	949,744	16,208	0	0	455,492	591,818	56.5%	11.0%
	Underdrain		949,744	510,462		439,283	0	0				
Bioretention S	Pond + Media	4,352,860	4,352,860	326,368	3,964,315	62,170	0	0	1,882,776	2,470,085	56.7%	45.7%
	Underdrain		3,964,315	2,143,704		1,820,606	0	0				
Total		5,400,170		3,061,890			0	0	2,338,267	3,061,903		56.7%
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	4.8582	4.8582	0.0612	4.7360	0.0610	0.0000	0.0000	2.8860	1.9734	40.6%	6.9%
	Underdrain		4.7360	1.9122		2.8251	0.0013	0.0000				
Bioretention S	Pond + Media	23.6268	23.6268	0.2857	23.0670	0.2740	0.0000	0.0000	13.9556	9.6791	41.0%	34.0%
	Underdrain		23.0670	9.3933		13.6816	0.0079	0.0000				
Total	onder di di i	28.4849	20.0070	11.6524		10:0010	0.0092	0.0000	16.8417	11.6524		40.9%
Total		20.4045		11.0524			0.0032	0.0000	10.8417	11.0524		40.378
NU 12 NI												
NH3N	Components	Inflow	Inflow to	Deserv	Flow to	Quarflow	Chart	End	Outflow	Lood	0/ ramavad	% removed
BMP	Components	Inflow		Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	1.8627	1.8627	0.1354	1.7018	0.0255	0.0000	0.0000	0.9277	0.9350	50.2%	8.5%
	Underdrain		1.7018	0.7996		0.9022	0.0000	0.0000				
Bioretention S	Pond + Media	9.1060	9.1060	1.0959	7.9036	0.1065	0.0000	0.0000	3.6043	5.5017	60.4%	50.2%
	Underdrain		7.9036	4.4057		3.4978	0.0000	0.0000				
Total		10.9687		6.4366			0.0000	0.0000	4.5320	6.4367		58.7%
NO3N									-			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	3.3295	3.3295	0.1722	3.1069	0.0505	0.0000	0.0000	1.7015	1.6280	48.9%	8.3%
	Underdrain		3.1069	1.4558		1.6510	0.0000	0.0000	1			
Bioretention S	Pond + Media	16.2402	16.2402	1.4320	14.5928	0.2155	0.0000	0.0000	6.8261	9.4142	58.0%	48.1%
	Underdrain		14.5929	7.9822		6.6106	0.0000	0.0000	1			
		19.5698		11.0422			0.0000	0.0000	8.5276	11.0422		56.4%
Total		10.0000	I	11.0722			0.0000	0.0000	0.0270	11.0722		55.470
Total												
ORGP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	load	% removed	% removed
	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow from BMP	Load	% removed	
ORGP	Components	to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
ORGP BMP		to BMP (lbs)	component (lbs)	(lbs)	underlayer (Ibs)	(lbs)	storage (Ibs)	storage (Ibs)	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow
ORGP	Pond + Media	to BMP	component (lbs) 1.5183	(lbs) 0.0233	underlayer	(lbs) 0.0195	storage (Ibs) 0.0000	storage (lbs) 0.0000	from BMP	removed	(based on	(based on
ORGP BMP Bioretention N	Pond + Media Underdrain	to BMP (lbs) 1.5183	component (lbs) 1.5183 1.4754	(lbs) 0.0233 0.6064	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692	storage (Ibs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.8887	removed (lbs) 0.6296	(based on BMP inflow) 41.5%	(based on total inflow 7.1%
ORGP BMP	Pond + Media Underdrain Pond + Media	to BMP (lbs)	component (lbs) 1.5183 1.4754 7.3840	(lbs) 0.0233 0.6064 0.4466	underlayer (Ibs)	(lbs) 0.0195 0.8692 0.0819	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow
ORGP BMP Bioretention N Bioretention S	Pond + Media Underdrain	to BMP (lbs) 1.5183 7.3840	component (lbs) 1.5183 1.4754	(lbs) 0.0233 0.6064 0.4466 3.8749	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692	storage (lbs) 0.0000 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625	removed (lbs) 0.6296 4.3215	(based on BMP inflow) 41.5%	(based on total inflow 7.1% 48.5%
ORGP BMP Bioretention N	Pond + Media Underdrain Pond + Media	to BMP (lbs) 1.5183	component (lbs) 1.5183 1.4754 7.3840	(lbs) 0.0233 0.6064 0.4466	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692 0.0819	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887	removed (lbs) 0.6296	(based on BMP inflow) 41.5%	(based on total inflow 7.1%
ORGP BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 1.5183 7.3840	component (lbs) 1.5183 1.4754 7.3840	(lbs) 0.0233 0.6064 0.4466 3.8749	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692 0.0819	storage (lbs) 0.0000 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625	removed (lbs) 0.6296 4.3215	(based on BMP inflow) 41.5%	(based on total inflow 7.1% 48.5%
ORGP BMP Bioretention N Bioretention S	Pond + Media Underdrain Pond + Media	to BMP (lbs) 1.5183 7.3840	component (lbs) 1.5183 1.4754 7.3840 6.8554	(lbs) 0.0233 0.6064 0.4466 3.8749	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692 0.0819	storage (lbs) 0.0000 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625	removed (lbs) 0.6296 4.3215	(based on BMP inflow) 41.5%	(based on total inflow 7.1% 48.5%
ORGP BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 1.5183 7.3840	component (lbs) 1.5183 1.4754 7.3840	(lbs) 0.0233 0.6064 0.4466 3.8749	underlayer (lbs) 1.4754	(lbs) 0.0195 0.8692 0.0819	storage (lbs) 0.0000 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625	removed (lbs) 0.6296 4.3215	(based on BMP inflow) 41.5%	(based on total inflow 7.1% 48.5% 55.6%
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 1.5183 7.3840 8.9023	component (lbs) 1.5183 1.4754 7.3840 6.8554	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513	underlayer (lbs) 1.4754 6.8554	(lbs) 0.0195 0.8692 0.0819 2.9806	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625 3.9512	removed (lbs) 0.6296 4.3215 4.9511	(based on BMP inflow) 41.5% 58.5%	(based on total inflow 7.1% 48.5% 55.6%
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 1.5183 7.3840 8.9023 Inflow to BMP	component (lbs) 1.5183 1.4754 7.3840 6.8554 Inflow to	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513 Decay	underlayer (lbs) 1.4754 6.8554 Flow to underlayer	(lbs) 0.0195 0.8692 0.0819 2.9806 Overflow	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End	from BMP (lbs) 0.8887 3.0625 3.9512 Outflow	removed (lbs) 0.6296 4.3215 4.9511 Load removed	(based on BMP inflow) 41.5% 58.5%	(based on total inflow 7.1% 48.5% 55.6% % removed (based on
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components	to BMP (lbs) 1.5183 7.3840 8.9023 Inflow to BMP (lbs)	component (lbs) 1.5183 1.4754 7.3840 6.8554 Inflow to component (lbs)	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513 Decay (lbs)	underlayer (lbs) 1.4754 6.8554 Flow to underlayer (lbs)	(lbs) 0.0195 0.8692 0.0819 2.9806 Overflow (lbs)	storage (lbs) 0.0000 0.0000 0.0000 0.0000 Start storage (lbs)	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs)	from BMP (lbs) 0.8887 3.0625 3.9512 Outflow from BMP (lbs)	removed (lbs) 0.6296 4.3215 4.9511 Load removed (lbs)	(based on BMP inflow) 41.5% 58.5% % removed (based on BMP inflow)	(based on total inflow 7.1% 48.5% 55.6% % removed (based on total inflow
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	to BMP (lbs) 1.5183 7.3840 8.9023 Inflow to BMP	component (lbs) 1.5183 1.4754 7.3840 6.8554 6.8554 0.6011	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513 Decay (lbs) 0.0091	underlayer (lbs) 1.4754 6.8554 Flow to underlayer	(lbs) 0.0195 0.8692 0.0819 2.9806 Overflow (lbs) 0.0077	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000	from BMP (lbs) 0.8887 3.0625 3.9512 Outflow from BMP	removed (lbs) 0.6296 4.3215 4.9511 Load removed	(based on BMP inflow) 41.5% 58.5% % removed (based on	(based on total inflow 7.1% 48.5% 55.6% % removed (based on
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP Bioretention N	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	to BMP (lbs) 1.5183 7.3840 8.9023 Inflow to BMP (lbs) 0.6011	component (lbs) 1.5183 1.4754 6.8554 Inflow to component (lbs) 0.6011 0.5842	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513 Decay (lbs) 0.0091 0.2411	underlayer (lbs) 1.4754 6.8554 Flow to underlayer (lbs) 0.5842	(lbs) 0.0195 0.8692 0.0819 2.9806 Overflow (lbs) 0.0077 0.3432	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.8887 3.0625 3.9512 Outflow from BMP (lbs) 0.3509	removed (lbs) 0.6296 4.3215 4.9511 Load removed (lbs) 0.2502	(based on BMP inflow) 41.5% 58.5% % removed (based on BMP inflow) 41.6%	(based on total inflow 7.1% 48.5% 55.6% % removed (based on total inflow 7.1%
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	to BMP (lbs) 1.5183 7.3840 8.9023 Inflow to BMP (lbs)	component (lbs) 1.5183 1.4754 7.3840 6.8554 6.8554 0.6011	(lbs) 0.0233 0.6064 0.4466 3.8749 4.9513 Decay (lbs) 0.0091	underlayer (lbs) 1.4754 6.8554 Flow to underlayer (lbs)	(lbs) 0.0195 0.8692 0.0819 2.9806 Overflow (lbs) 0.0077	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000	from BMP (lbs) 0.8887 3.0625 3.9512 Outflow from BMP (lbs)	removed (lbs) 0.6296 4.3215 4.9511 Load removed (lbs)	(based on BMP inflow) 41.5% 58.5% % removed (based on BMP inflow)	(based on total inflow 7.1% 48.5% 55.6% % removed (based on total inflow

Table G-5 2008 Flows and Loads of Subbasin 260 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
DIVIP	components	to BMP	component	Evaporation	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioretention N	Pond + Media	4.8312	4.8312	0.0127	3.8121	1.0064	0.0000	0.0000	4.4037	0.3581	7.4%	1.3%
	Underdrain		3.8121	0.3454		3.3972	0.0000	0.0694				
Bioretention S	Pond + Media	23.4737	23.4737	0.0619	18.5647	4.8472	0.0000	0.0000	21.3683	1.7633	7.5%	6.2%
	Underdrain		18.5647	1.7015		16.5211	0.0000	0.3421				
Total		28.3049		2.1215			0.0000	0.4116	25.7720	2.1214		7.5%
	total rainfall (in)	31.205										
h	rainage area (ac)	27.228										
	erall runoff coeff	0.400										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	(1.5.1.5)	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention N	Pond + Media	2,017,502	2,017,502	263,504 734,023	1,648,068	105,934	0	0	1,016,198	997,693	49.5%	9.6%
Bioretention S	Underdrain Pond + Media	8,362,570	1,648,068 8,362,570	1,066,588	6,878,127	910,264 417,870	0	3,611 0	4,203,736	4,143,785	49.6%	39.9%
Diorecentions	Underdrain	0,502,570	6,878,127	3,076,512	0,070,127	3,785,867	0	15,049	4,203,730	4,143,703	45.070	33.370
Total		10,380,072	0,010,221	5,140,627			0	18,660	5,219,934	5,141,478		49.5%
		.,		-, -,				,	, .,	, _,		
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	9.0796	9.0796	0.1995	8.5394	0.3407	0.0000	0.0000	5.9631	2.9377	32.4%	5.5%
Bioretention S	Underdrain Pond + Media	43.9797	8.5394 43.9797	2.7368 0.9367	41.5254	5.6224 1.5177	0.0000	0.1787	28.7726	14.3345	32.6%	27.0%
Bioretention S	Underdrain	43.9797	43.9797 41.5254	13.3911	41.5254	27.2548	0.0000	0.8726	28.7720	14.5545	32.0%	27.0%
Total	onderdram	53.0593	41.5254	17.2641		27.2540	0.0000	1.0513	34.7357	17.2723		32.6%
10101		55.6555		1/12011			0.0000	1.0010	011/00/	1/12/20		52.070
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	4.3407	4.3407	0.5187	3.1211	0.7009	0.0000	0.0000	2.6129	1.7190	39.6%	6.7%
	Underdrain		3.1211	1.1999		1.9120	0.0000	0.0089				
Bioretention S	Pond + Media	21.1445	21.1445	4.1596	13.7534	3.2315	0.0000	0.0000	10.3861	10.7514	50.8%	42.2%
T-+-1	Underdrain	25 4052	13.7534	6.5913		7.1546	0.0000	0.0070	42,0000	42,4702		40.00/
Total		25.4852		12.4695			0.0000	0.0159	12.9990	12.4703		48.9%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(Ibs)	(lbs)	(Ibs)	(lbs)	(Ibs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	7.0600	7.0600	0.6042	5.6522	0.8036	0.0000	0.0000	4.3169	2.7114	38.4%	6.5%
	Underdrain		5.6522	2.1063		3.5133	0.0000	0.0318				
Bioretention S	Pond + Media	34.3972	34.3972	5.0243	25.6700	3.7028	0.0000	0.0000	17.6418	16.7181	48.6%	40.3%
	Underdrain	44.4570	25.6700	11.6916		13.9390	0.0000	0.0373	04.0507	10,1005		46.00/
Total		41.4573		19.4264			0.0000	0.0691	21.9587	19.4295		46.9%
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
	ponento	to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	2.8699	2.8699	0.0735	2.6911	0.1053	0.0000	0.0000	1.8567	0.9647	33.6%	5.7%
	Underdrain		2.6911	0.8907		1.7513	0.0000	0.0486				
Bioretention S	Pond + Media	13.9085	13.9085	1.3992	12.0775	0.4317	0.0000	0.0000	6.7812	7.0933	51.0%	42.3%
	Underdrain		12.0775	5.6926		6.3495	0.0000	0.0339				
Total		16.7784		8.0561			0.0000	0.0825	8.6379	8.0580		48.0%
OPTHOP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
DIVIP	components	to BMP	component	Decay	underlayer	Gvernow	start	storage	from BMP	removed	(based on	% removed (based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	1.1487	1.1487	0.0295	1.0696	0.0497	0.0000	0.0000	0.7464	0.3828	33.3%	5.7%
	Underdrain		1.0696	0.3532		0.6967	0.0000	0.0195	1			
Bioretention S	Pond + Media	5.5411	5.5411	0.5572	4.7886	0.1954	0.0000	0.0000	2.7130	2.8145	50.8%	42.1%
		1	4.7886	2.2567		2.5176	0.0000	0.0136	1	1	1	
	Underdrain		4.7000	2.2307		2.51/0	0.0000	0.0150				

Table G-6 2009 Flows and Loads of Subbasin 260 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
DIVIP	components	to BMP	component	Evaporation	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioretention N	Pond + Media	6.4796	6.4796	0.0203	4.8296	1.6299	0.0000	0.0000	6.0265	0.5000	7.6%	1.3%
	Underdrain		4.8296	0.4798		4.3966	0.0694	0.0226				
Bioretention S	Pond + Media	31.4883	31.4883	0.0987	23.5906	7.7989	0.0000	0.0000	29.2597	2.4612	7.7%	6.4%
	Underdrain		23.5906	2.3624		21.4608	0.3421	0.1095				
Total		37.9680		2.9612			0.4116	0.1321	35.2862	2.9613		7.7%
	total rainfall (in)	37.961										
h	rainage area (ac)	27.228										
	erall runoff coeff	0.441										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention N	Pond + Media	2,312,001	2,312,001	387,205	1,592,080	332,727	0	0	1,263,556	1,050,409	45.4%	8.8%
Bioretention S	Underdrain Pond + Media	9,584,794	1,592,080 9,584,794	663,307 1,600,019	6,648,047	930,829 1,336,741	3,611 0	1,648 0	5,217,168	4,375,824	45.6%	36.7%
BIOTELETICIOTIS	Underdrain	5,564,754	6,648,047	2,776,187	0,048,047	3,880,427	15,049	6,851	5,217,108	4,575,624	43.0%	50.776
Total	onderdram	11,896,795	0,040,047	5,426,718		3,000,427	18,660	8,499	6,480,724	5,426,233		45.5%
. otui	1	11,000,703	I	5,720,710		I	10,000	0,499	0,700,724	5,720,233	1	-3.370
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(Ibs)	(lbs)	(Ibs)	(Ibs)	(Ibs)	(lbs)	(Ibs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	9.7762	9.7762	0.3118	8.2307	1.2337	0.0000	0.0000	7.0999	2.6894	27.0%	4.6%
	Underdrain		8.2307	2.3777		5.8662	0.1787	0.1656				
Bioretention S	Pond + Media	47.3577	47.3577	1.4998	40.0958	5.7624	0.0000	0.0000	34.2941	13.1310	27.2%	22.6%
	Underdrain		40.0958	11.6317		28.5318	0.8726	0.8052		1		
Total		57.1339		15.8209			1.0513	0.9708	41.3941	15.8204		27.2%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
DIVIP	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)		total inflow
Bioretention N	Pond + Media	5.1781	5.1781	0.7758	3.2117	1.1907	0.0000	0.0000	3.2410	1.9416	37.4%	6.4%
	Underdrain		3.2117	1.1659	-	2.0504	0.0089	0.0044				
Bioretention S	Pond + Media	25.2010	25.2010	6.1253	13.7674	5.3082	0.0000	0.0000	12.7752	12.4307	49.3%	40.9%
	Underdrain		13.7674	6.3056		7.4671	0.0070	0.0021	1			
Total		30.3791		14.3727			0.0159	0.0065	16.0163	14.3723		47.3%
NO3N					F 1 · ·				0.10		1.0/	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component (lbs)	(Ibs)	underlayer	(Ibs)	storage (lbc)	storage (Ibs)	from BMP	removed	(based on BMP inflow)	(based on total inflow
Bioretention N	Pond + Media	(lbs) 8.0449	8.0449	0.9093	(lbs) 5.6474	1.4882	(lbs) 0.0000	0.0000	(lbs) 5.1869	(lbs) 2.8688	35.5%	6.1%
Dioretention iv	Underdrain	0.0445	5.6474	1.9598	5.0474	3.6987	0.0318	0.0209	5.1005	2.0000	33.570	0.1/0
Bioretention S	Pond + Media	39.1883	39.1883	7.5008	24.9918	6.6957	0.0000	0.0000	20.9913	18.2186	46.4%	38.5%
	Underdrain		24.9918	10.7190		14.2956	0.0373	0.0157				
Total		47.2332		21.0889			0.0691	0.0366	26.1782	21.0874		44.6%
	•		•						•			
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	3.0883	3.0883	0.1111	2.6000	0.3772	0.0000	0.0000	2.1955	0.8975	28.6%	4.9%
	Underdrain		2.6000	0.7865		1.8183	0.0486	0.0438	7.0400	7.4694	17.00/	20.5%
Bioretention S	Pond + Media	14.9614	14.9614	2.0753	11.2761	1.6100	0.0000	0.0000	7.8103	7.1681	47.8%	39.5%
Tetel	Underdrain	40.0400	11.2761	5.0936		6.2003	0.0339	0.0169	40.0050	0.0055		44.50/
Total	1	18.0496	1	8.0664			0.0825	0.0608	10.0058	8.0656	1	44.5%
ORTHOP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		total inflow
Bioretention N	Pond + Media	1.2382	1.2382	0.0449	1.0353	0.1580	0.0000	0.0000	0.8830	0.3571	28.4%	4.9%
	Underdrain		1.0353	0.3122		0.7250	0.0195	0.0176	1			
Bioretention S	Pond + Media	5.9679	5.9679	0.8334	4.4694	0.6651	0.0000	0.0000	3.1262	2.8484	47.6%	39.3%
		1							7	1	1	1
	Underdrain		4.4694	2.0154		2.4611	0.0136	0.0068				

Table G-7 2010 Flows and Loads of Subbasin 260 BMP Performance Evaluation Modeling

FLOW BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioretention N	Pond + Media	20.6852	20.6852	0.0627	16.4383	4.1846	0.0000	0.0000	18.8993	1.7634	8.5%	1.5%
	Underdrain	İ	16.4383	1.7007		14.7147	0.0000	0.0226	1			
Bioretention S	Pond + Media	100.4797	100.4797	0.3048	80.1614	20.0132	0.0000	0.0000	91.6934	8.6768	8.6%	7.2%
	Underdrain	I	80.1614	8.3718		71.6802	0.0000	0.1095				
Total		121.1649		10.4400			0.0000	0.1321	110.5927	10.4401		8.6%
			•									
	total rainfall (in)	131.314										
d	lrainage area (ac)	27.228										
ove	erall runoff coeff	0.407										
ВАСТ		•										
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention N	Pond + Media	8,403,566	8,403,566	1,090,944	6,525,893	786,737	0	0	4,353,352	4,048,566	48.2%	9.4%
	Underdrain		6,525,894	2,957,554		3,566,615	0	1,648				
Bioretention S	Pond + Media	34,805,558	34,805,558	4,466,165	27,206,395	3,133,038	0	0	17,948,646	16,850,060	48.4%	39.0%
	Underdrain		27,206,395	12,383,613		14,815,608	0	6,851				
Total		43,209,124		20,898,275			0	8,499	22,301,998	20,898,626		48.4%
ORGN	1	1						1	1		1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention N	Pond + Media	37.5666	37.5666	0.8689	33.8248	2.8730	0.0000	0.0000	25.8870	11.5140	30.6%	5.2%
	Underdrain		33.8248	10.6438		23.0140	0.0000	0.1656				
Bioretention S	Pond + Media	181.7779	181.7779	4.1311	164.4413	13.2058	0.0000	0.0000	124.7356	56.2372	30.9%	25.6%
	Underdrain		164.4413	52.0996		111.5298	0.0000	0.8052				
Total		219.3446		67.7434			0.0000	0.9708	150.6226	67.7512		30.9%
NH3N	1								1		1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioretention N	Pond + Media	18.2594	18.2594	2.1939	13.0471	3.0184	0.0000	0.0000	10.9416	7.3133	40.1%	6.8%
	Underdrain		13.0471	5.1193		7.9232	0.0000	0.0044				
Bioretention S	Pond + Media	88.8761	88.8761	17.5653	57.7831	13.5277	0.0000	0.0000	43.1772	45.6969	51.4%	42.7%
	Underdrain		57.7831	28.1314		29.6495	0.0000	0.0021				
Total		107.1355		53.0098			0.0000	0.0065	54.1188	53.0102		49.5%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		total inflov
Bioretention N	Pond + Media	29.2917	29.2917	2.5763	22.8408	3.8746	0.0000	0.0000	18.0402	11.2306	38.3%	6.5%
	Underdrain		22.8408	8.6537		14.1656	0.0000	0.0209				
Bioretention S	Pond + Media	142.6522	142.6522	21.4884	103.6695	17.4940	0.0000	0.0000	73.2714	69.3652	48.6%	40.3%
	Underdrain		103.6695	47.8756		55.7774	0.0000	0.0157				
Total		171.9439		80.5941			0.0000	0.0366	91.3115	80.5957		46.9%
ORGP	1	1	1					1	1		1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	11.9142	11.9142	0.3160	10.7114	0.8867	0.0000	0.0000	8.0613	3.8091	32.0%	5.5%
	Underdrain		10.7114	3.4926		7.1746	0.0000	0.0438				
	Pond + Media	57.6696	57.6696	6.0159	47.9132	3.7405	0.0000	0.0000	28.6623	28.9904	50.3%	41.7%
Bioretention S	Underdrain		47.9132	22.9738		24.9218	0.0000	0.0169				
Bioretention S	Underdrain	69.5838		32.7983			0.0000	0.0608	36.7236	32.7994		47.1%
	Onderdrain											
Total	onderdrain											
Total ORTHOP			1			1		1	1		1	
Total	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Total ORTHOP			Inflow to component	Decay	Flow to underlayer	Overflow	Start storage	End storage	Outflow from BMP	Load removed	% removed (based on	
Total ORTHOP		Inflow		Decay (lbs)		Overflow (lbs)						(based or
Total ORTHOP BMP		Inflow to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
Bioretention S Total ORTHOP BMP Bioretention N	Components	Inflow to BMP (lbs)	component (Ibs)	(lbs)	underlayer (lbs)	(lbs)	storage (lbs)	storage (Ibs)	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow
Total ORTHOP BMP	Components Pond + Media	Inflow to BMP (lbs)	component (lbs) 4.8172	(lbs) 0.1295	underlayer (lbs)	(lbs) 0.3861	storage (Ibs) 0.0000	storage (lbs) 0.0000	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	
Total ORTHOP BMP Bioretention N	Components Pond + Media Underdrain	Inflow to BMP (Ibs) 4.8172	component (lbs) 4.8172 4.3016	(lbs) 0.1295 1.3957	underlayer (lbs) 4.3016	(lbs) 0.3861 2.8881	storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0176	from BMP (lbs) 3.2743	removed (lbs) 1.5253	(based on BMP inflow) 31.7%	(based on total inflov 5.4%

Table G-8 2007-2010 Flows and Loads of Subbasin 260 BMP Performance Evaluation Modeling

Table G-9 Summary of Flow and Load Removed of Subbasin 260 BMP Performance Evaluation Modeling

								C							
FLOW															
BMP		Flow removed (ac-ft)					% removed	l (based on E	8MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	0.5389	0.3663	0.3581	0.5000	1.7634	7.0%	22.3%	7.4%	7.6%	8.5%	1.2%	3.8%	1.3%	1.3%	1.5%
Bioretention S	2.6541	1.7982	1.7633	2.4612	8.6768	7.1%	22.5%	7.5%	7.7%	8.6%	5.9%	18.7%	6.2%	6.4%	7.2%
Total	3.1930	2.1645	2.1214	2.9613	10.4401						7.0%	22.5%	7.5%	7.7%	8.6%

BACT															
BMP		Load	d removed (1	.0^6)			% removed	l (based on B	MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	1,408,647	591,818	997,693	1,050,409	4,048,566	46.5%	56.5%	49.5%	45.4%	48.2%	9.1%	11.0%	9.6%	8.8%	9.4%
Bioretention S	5,860,367	2,470,085	4,143,785	4,375,824	16,850,060	46.9%	56.7%	49.6%	45.6%	48.4%	37.7%	45.7%	39.9%	36.7%	39.0%
Total	7,269,013	3,061,903	5,141,478	5,426,233	20,898,626						46.8%	56.7%	49.5%	45.5%	48.4%

ORGN

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	3.9135	1.9734	2.9377	2.6894	11.5140	28.3%	40.6%	32.4%	27.0%	30.6%	4.9%	6.9%	5.5%	4.6%	5.2%
Bioretention S	19.0926	9.6791	14.3345	13.1310	56.2372	28.6%	41.0%	32.6%	27.2%	30.9%	23.7%	34.0%	27.0%	22.6%	25.6%
Total	23.0061	11.6524	17.2723	15.8204	67.7512						28.5%	40.9%	32.6%	27.2%	30.9%

NH3N

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	2.7178	0.9350	1.7190	1.9416	7.3133	39.5%	50.2%	39.6%	37.4%	40.1%	6.7%	8.5%	6.7%	6.4%	6.8%
Bioretention S	17.0132	5.5017	10.7514	12.4307	45.6969	50.9%	60.4%	50.8%	49.3%	51.4%	42.2%	50.2%	42.2%	40.9%	42.7%
Total	19.7310	6.4367	12.4703	14.3723	53.0102						49.0%	58.7%	48.9%	47.3%	49.5%

NO3N

BMP		Loa	d removed	lbs)			% removed	l (based on B	BMP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	4.0224	1.6280	2.7114	2.8688	11.2306	37.0%	48.9%	38.4%	35.5%	38.3%	6.3%	8.3%	6.5%	6.1%	6.5%
Bioretention S	25.0142	9.4142	16.7181	18.2186	69.3652	47.4%	58.0%	48.6%	46.4%	48.6%	39.3%	48.1%	40.3%	38.5%	40.3%
Total	29.0367	11.0422	19.4295	21.0874	80.5957						45.6%	56.4%	46.9%	44.6%	46.9%

ORGP

BMP		Loa	d removed (lbs)			% removed	l (based on B	BMP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	1.3173	0.6296	0.9647	0.8975	3.8091	29.7%	41.5%	33.6%	28.6%	32.0%	5.1%	7.1%	5.7%	4.9%	5.5%
Bioretention S	10.4075	4.3215	7.0933	7.1681	28.9904	48.6%	58.5%	51.0%	47.8%	50.3%	40.3%	48.5%	42.3%	39.5%	41.7%
Total	11.7247	4.9511	8.0580	8.0656	32.7994						45.4%	55.6%	48.0%	44.5%	47.1%

ORTHOP

BMP		Loa	d removed (Load removed (lbs)					MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	0.5352	0.2502	0.3828	0.3571	1.5253	29.3%	41.6%	33.3%	28.4%	31.7%	5.1%	7.1%	5.7%	4.9%	5.4%
Bioretention S	4.2176	1.7146	2.8145	2.8484	11.5952	48.2%	58.7%	50.8%	47.6%	50.0%	39.9%	48.7%	42.1%	39.3%	41.4%
Total	4.7528	1.9647	3.1973	3.2056	13.1205						45.0%	55.8%	47.8%	44.3%	46.9%

H. Subbasin 270 BMP Performance Evaluation Modeling

Site Description and Land uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 270 is Rosedale Park bounded by Ruiz St to the north and Dartmouth St to the south as shown in Exhibit H-1. Apache Creek runs through the park. Existing facilities in the park include soccer fields and baseball fields. A YMCA facility is adjacent to the park as shown in Exhibit H-1.

As shown in Exhibit H-1, a significant area of the park is in the effective 100-year floodplain and excluded from locating BMP. The open area west of Apache Creek appears to be a filled area. It was decided not to disturb this area. A site for a BMP was considered to the east of the YMCA facility but was decided to be not suitable because the drainage area would cross into another subbasin. Following evaluation of site conditions including floodplain boundary and discussion with the River Authority, a bioretention was proposed at the north end of the park as shown in Exhibits H-1 and H-2. Based on the size classification in the BMP Tool Database, the size was considered "average."

The drainage area to the BMP site was delineated using ArcHydro and the DEM provided by the River Authority and determined to be 1.689 acres. The drainage area is mostly a fire station. The land use is classified as commercial. The land uses and their corresponding impervious cover percentages from the 2017 land use data provided by the River Authority are used to determine the pervious and impervious areas within the delineated area, as listed in Table H-1.

14010 11 1	Lund uses		bin bite	
Land use	IC%	Pervious	Impervious	Total
		Area	Area	Area
		(ac)	(ac)	(ac)
Commercial	90	0.138	1.240	1.378
Transportation	90	0.031	0.280	0.311
TOTAL	90	0.169	1.520	1.689

Table H-1 Land uses of Subbasin 270 BMP Site

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQV for the selected BMP site is: $1.5^{\circ}/12 \ge 0.6 \ge 1.520 = 0.137 = 0.137$ ac-ft

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The WQV and surface area of the bioretention are shown in Table H-2.

Table H-2 Water Quality Vol	ume and Surface Area of	f Subbasin 270 BMP Site
BMP	WQV (ac-ft)	Surface area (ac)
Bioretention	0.1731	0.0829
Required	0.1370	

_____

Note: Surface area is the area at the water level of the WQV.

Exhibit H-1 Delineated Drainage Area to Subbasin 270 BMP Site

Exhibit H-2 Proposed BMP Layout on Subbasin 270 Site

Modeling Bioretention in HSPF

Refer to the discussion in Section F.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

Bioretention

The BMP performance evaluation modeling results are summarized in several tables. Table H-3 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

	1-3 LC Concentration	is of Subbasili 270 Dr	VII Layouts Over 200	77-2010
	Inf	low	Out	flow
BMP	Geomean (#/dL)	Flow-weighted Geomean (#/dL)	Geomean (#/dL)	Flow-weighted Geomean (#/dL)

8,455

7.413

8.540

43.044

Table H-3 EC Concentrations of Subbasin 270 BMP Layouts Over 2007-2010

Tables H-4 to H-7 list the model output annual inflows and outflows of the bioretention in Subbasin 150 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed and the corresponding removal percentages (or BMP performance) are also listed. Table H-8 shows the same set of information but for the 4-year total. The loads removed and removal percentages calculated are summarized in Table H-9 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
lioretention	Pond + Media	4.0551	4.0551	0.0139	3.4035	0.6378	0.0000	0.0000	3.7287	0.3235	8.0%
orecention	Underdrain	4.0551	3.4035	0.3096	3.4033	3.0909	0.0000	0.0029	3.7287	0.3235	0.0%
	onderdrain		3.4033	0.3050		3.0505	0.0000	0.0025			
	total rainfall (in)	47.927									
dr	ainage area (ac)	1.688									
ove	rall runoff coeff	0.601									
BACT											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	1,036,699	1,036,699	116,524	842,458	77,716	0	0	525,421	511,272	49.3%
	Underdrain	,,	842,458	394,747		447,705	0	7	,	- ,	
								1			
DRGN				-							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	<i></i> .	underlayer	<i></i> .	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	7.1461	7.1461	0.1396	6.5855	0.4209	0.0000	0.0000	4.9441	2.1964	30.7%
	Underdrain		6.5855	2.0568		4.5232	0.0000	0.0055			
NH3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	3.6217	3.6217	0.3807	2.7882	0.4529	0.0000	0.0000	2.1026	1.5191	41.9%
	Underdrain		2.7882	1.1384		1.6497	0.0000	0.0000			
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	5.7304	5.7304	0.4486	4.6684	0.6135	0.0000	0.0000	3.4658	2.2646	39.5%
	Underdrain		4.6684	1.8160		2.8523	0.0000	0.0001	1		
BMP	Components	Inflow	Inflow to	Docard	Flow to	Overflow	Stort	End	Outflow	Load	Remova
DIVIP	components			Decay		Overnow	Start				Remova
		to BMP	component (lbc)	(lbc)	underlayer	(lbc)	storage (lbc)	storage (lbc)	from BMP	removed	
Bioretention	Pond + Media	(lbs) 2.2923	(lbs) 2.2923	(lbs) 0.0508	(lbs) 2.1093	(lbs) 0.1321	(lbs) 0.0000	(lbs) 0.0000	(lbs) 1.5533	(lbs) 0.7378	32.2%
biorecention	Underdrain	2.2923	2.2923	0.0508	2.1093	1.4211	0.0000	0.0000	1.3533	0.7378	52.2%
	onucrutain		2.1055	0.0070		1.4211	0.0000	0.0012	1	L	1
ORTHOP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	0.9232	0.9232	0.0206	0.8491	0.0535	0.0000	0.0000	0.6262	0.2965	32.1%
biorecention	Underdrain		0.8491	0.2759		0.5728	0.0000	0.0005	1		1

Table H-4 2007 Flows and Loads of Subbasin 270 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component	·	underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	0.8571	0.8571	0.0020	0.8550	0.0000	0.0000	0.0000	0.6456	0.2144	24.9%
	Underdrain		0.8550	0.2124		0.6456	0.0029	0.0000			
	total rainfall (in)	14.221									
	rainage area (ac)	1.688									
ove	erall runoff coeff	0.428									
ВАСТ											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	365,205	365,205	24,939	340,266	0	0	0	146,130	219,081	60.0%
	Underdrain		340,266	194,143		146,130	7	0			
0000											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
DIVIE	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	Remova
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	2.5552	2.5552	0.0283	2.5269	0.0000	0.0000	0.0000	1.4225	1.1383	44.5%
biorecention	Underdrain	2.5552	2.5352	1.1100	2.5205	1.4225	0.0055	0.0000	1.4225	1.1505	44.570
	1			0					1		
NH3N					_						
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	0.9971	0.9971	0.0623	0.9348	0.0000	0.0000	0.0000	0.4638	0.5333	53.5%
	Underdrain		0.9348	0.4711		0.4638	0.0000	0.0000			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
DIVII	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	Remove
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	1.7689	1.7689	0.0808	1.6880	0.0000	0.0000	0.0000	0.8388	0.9302	52.6%
biorecention	Underdrain	11/005	1.6880	0.8494	1.0000	0.8388	0.0001	0.0000	0.0000	0.5502	52.070
ORGP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	0.7986	0.7986	0.0108	0.7877	0.0000	0.0000	0.0000	0.4376	0.3621	45.3%
	Underdrain		0.7877	0.3513		0.4376	0.0012	0.0000			
ORTHOP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
0.41	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	0.3161	0.3161	0.0042	0.3119	0.0000	0.0000	0.0000	0.1727	0.1439	45.5%
	Underdrain	0.0101	0.3101	0.1397	0.0115	0.1727	0.0005	0.0000	1	0.1400	.5.570
				0.1337		0.1/2/	0.0005	0.0000			1

Table H-5 2008 Flows and Loads of Subbasin 270 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
2	components	to BMP	component	Lindportation	underlayer	oremon	storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	2.5355	2.5355	0.0074	2.0552	0.4729	0.0000	0.0000	2.2796	0.2140	8.4%
lorecention	Underdrain	210000	2.0552	0.2066	210002	1.8067	0.0000	0.0419	2.2750	0.2210	0.170
	total rainfall (in)	31.205									
dr	ainage area (ac)	1.688									
ove	rall runoff coeff	0.578									
BACT									-		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	697,796	697,796	74,736	598,647	24,412	0	0	344,827	351,676	50.4%
	Underdrain		598,647	276,879		320,415	0	1,292			
DRGN				-							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	<i></i> .	underlayer	<i></i> .	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	4.7308	4.7308	0.0815	4.5493	0.0999	0.0000	0.0000	3.0094	1.6237	34.3%
	Underdrain		4.5493	1.5414		2.9095	0.0000	0.0977			
NH3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
DIVII	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	Remove
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	2.2992	2.2992	0.2308	1.7394	0.3290	0.0000	0.0000	1.3620	0.9324	40.6%
Sidictention	Underdrain	212352	1.7394	0.7014	1,001	1.0330	0.0000	0.0049	1.502.0	010021	101070
-											
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	3.7389	3.7389	0.2662	3.1121	0.3606	0.0000	0.0000	2.2401	1.4813	39.6%
	Underdrain		3.1121	1.2146		1.8795	0.0000	0.0175	1		
ORGP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	1.4971	1.4971	0.0300	1.4348	0.0323	0.0000	0.0000	0.9385	0.5320	35.5%
	Underdrain		1.4348	0.5018		0.9062	0.0000	0.0265			
ORTHOP											1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
	Pond + Media	0.5927	0.5927	0.0119	0.5675	0.0133	0.0000	0.0000	0.3717	0.2104	35.5%
Bioretention	Underdrain		0.5675	0.1984	1	0.3583	0.0000	0.0107	1		1

Table H-6 2009 Flows and Loads of Subbasin 270 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
	-	to BMP	component		underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
Bioretention	Pond + Media	3.4019	3.4019	0.0113	2.7073	0.6832	0.0000	0.0000	3.1325	0.2997	8.7%
	Underdrain		2.7073	0.2883		2.4493	0.0419	0.0116			
	total rainfall (in)	37.961									
	rainage area (ac)	1.688									
OVE	erall runoff coeff	0.637									
ВАСТ											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	799,974	799,974	131,720	588,546	79,709	0	0	418,912	374,919	46.8%
	Underdrain		588,546	243,263		339,204	1,292	7,435			
ORCN											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
Divit		to BMP	component	Decay	underlayer	500 million	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	5.0943	5.0943	0.1560	4.5040	0.4343	0.0000	0.0000	3.6012	1.4531	28.0%
biorecention	Underdrain	5105 15	4.5040	1.2979	115010	3.1669	0.0977	0.1378	0.0012	111001	2010/10
	1										
NH3N	·										
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	2.7339	2.7339	0.4136	1.8299	0.4905	0.0000	0.0000	1.6455	1.0735	39.2%
	Underdrain		1.8299	0.6601		1.1551	0.0049	0.0198			
NO3N											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	4.2578	4.2578	0.4737	3.1863	0.5977	0.0000	0.0000	2.6580	1.5639	36.6%
	Underdrain		3.1863	1.0907		2.0603	0.0175	0.0534			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
Divil	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	nemova
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	1.6096	1.6096	0.0554	1.4205	0.1337	0.0000	0.0000	1.1125	0.4844	29.6%
Siorecention	Underdrain	1.0050	1.4205	0.4292	1.1200	0.9788	0.0265	0.0393	1.1120	0.1011	251070
ORTHOP	<u>т</u> г		-			,					1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	L
Bioretention	Pond + Media	0.6376	0.6376	0.0221	0.5617	0.0538	0.0000	0.0000	0.4412	0.1913	29.5%
	Underdrain		0.5617	0.1693		0.3874	0.0107	0.0158	1		1

Table H-7 2010 Flows and Loads of Subbasin 270 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
ioretention	Pond + Media	10.8496	10.8496	0.0346	9.0211	1.7939	0.0000	0.0000	9.7864	1.0516	9.7%
	Underdrain		9.0211	1.0169		7.9926	0.0000	0.0116			
	total rainfall (in)	131.314									
	ainage area (ac)	1.688									
	rall runoff coeff	0.587									
ВАСТ											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
5	components	to BMP	component	Decay	underlayer	oremon	storage	storage	from BMP	removed	
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	
Bioretention	Pond + Media	2,899,674	2,899,674	347,919	2,369,918	181,837	0	0	1,435,291	1,456,948	50.2%
	Underdrain	,,.	2,369,918	1,109,032	//-	1,253,454	0	7,435	,, -	, ,	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	19.5264	19.5264	0.4055	18.1658	0.9551	0.0000	0.0000	12.9772	6.4114	32.8%
	Underdrain		18.1658	6.0060		12.0221	0.0000	0.1378	1		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
5	components	to BMP	component	Decay	underlayer	oremon	storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	9.6519	9.6519	1.0873	7.2923	1.2723	0.0000	0.0000	5.5738	4.0583	42.0%
	Underdrain		7.2923	2.9710		4.3015	0.0000	0.0198	1		
NO3N	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Ctort	End	Outflow	Load	Romaya
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow from BMD	Load	Remova
		to BMP (lbs)	component (lbs)	(lbs)	underlayer (lbs)	(lbs)	storage (Ibs)	storage (lbs)	from BMP	removed (lbs)	
Bioretention	Pond + Media	15.4960	15.4960	1.2693	12.6549	1.5718	0.0000	0.0000	(lbs) 9.2026	6.2400	40.3%
sorecention	Underdrain	13.4900	12.6549	4.9707	12.0349	7.6308	0.0000	0.0534	5.2020	0.2400	40.3%
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
Divil	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	Remova
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	6.1975	6.1975	0.1470	5.7524	0.2981	0.0000	0.0000	4.0419	2.1164	34.1%
	Underdrain		5.7524	1.9694		3.7437	0.0000	0.0393			
ORTHOP											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Remova
		to BMP	component		underlayer		storage	storage	from BMP	removed	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
Bioretention	Pond + Media	2.4696	2.4696	0.0588	2.2902	0.1206	0.0000	0.0000	1.6117	0.8421	34.1%
	Underdrain		2.2902	0.7833		1.4911	0.0000	0.0158	1		

Table H-8 2007-2010 Flows and Loads of Subbasin 270 BMP Performance Evaluation Modeling

 Table H-9 Summary of Flow and Load Removed of Subbasin 270 BMP Performance Evaluation

 Modeling

Constituent		Flow/Lo	oad removed	d (ac-ft)				% removed		
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Flow	0.3235	0.2144	0.2140	0.2997	1.0516	8.0%	24.9%	8.4%	8.7%	9.7%
BACT	511,272	219,081	351,676	374,919	1,456,948	49.3%	60.0%	50.4%	46.8%	50.2%
ORGN	2.1964	1.1383	1.6237	1.4531	6.4114	30.7%	44.5%	34.3%	28.0%	32.8%
NH3N	1.5191	0.5333	0.9324	1.0735	4.0583	41.9%	53.5%	40.6%	39.2%	42.0%
NO3N	2.2646	0.9302	1.4813	1.5639	6.2400	39.5%	52.6%	39.6%	36.6%	40.3%
ORGP	0.7378	0.3621	0.5320	0.4844	2.1164	32.2%	45.3%	35.5%	29.6%	34.1%
ORTHOP	0.2965	0.1439	0.2104	0.1913	0.8421	32.1%	45.5%	35.5%	29.5%	34.1%

I. Subbasin 310 BMP Performance Evaluation Modeling

Site Description and Land uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 310 is Lee's Creek Park to the east of Hillcrest Dr as shown in Exhibit I-1. The creek is not a FEMA studied stream and there is no effective floodplain delineated.

Exhibits I-1 and I-2 show delineated drainage area and proposed BMP layout, respectively, for USAR Subbasin 310.

Following evaluation of site conditions and discussion the River Authority, a bioswale was proposed north of the creek and a bioretention south of the creek as shown in Exhibits I-1 and I-2. Based on the size classification in the BMP Tool Database, the bioretention was considered "average."

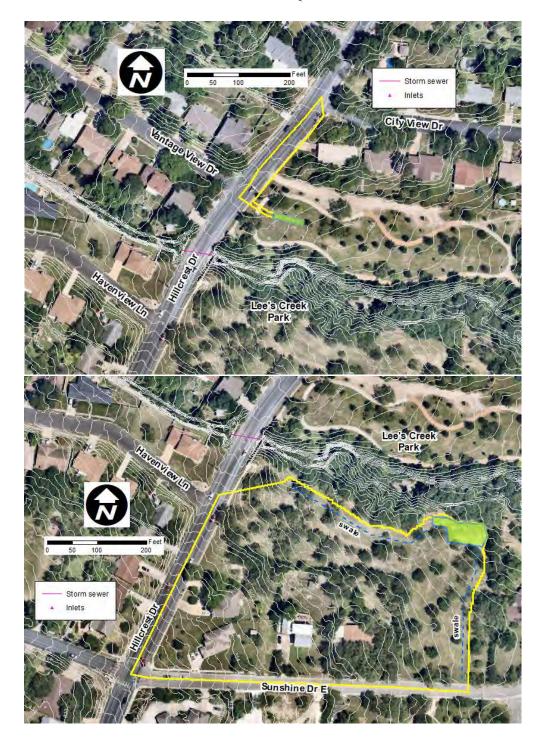
The drainage areas to the bioswale and bioretention were delineated using Arc Hydro and the DEM data provided by the River Authority. The areas were determined to be 0.175 acre for the bioswale and 5.022 acres for the bioretention. As shown in Exhibit I-1, the land use in the delineated drainage areas include single-family residential and transportation.

The land uses and their corresponding impervious cover percentages from the 2017 land use data provided by the River Authority are used to determine the pervious (Per.) and impervious (Imp.) areas within the delineated drainage areas, as listed in Table I-1.

Land use	IC%		Bioswale		IC%	I	Bioretention		
		Per.	Imp.	Total		Per.	Imp.	Total	
		Area	Area	Area		Area	Area	Area	
		(ac)	(ac)	(ac)		(ac)	(ac)	(ac)	
Residential Low Density	25	0.014	0.005	0.019	25	3.332	1.110	4.442	
Transportation	90	0.016	0.140	0.156	90	0.058	0.522	0.580	
TOTAL	82.9	0.030	0.145	0.175	32.5	3.390	1.632	5.022	

Table I-1 Land uses of Subbasin 310 BMP Sites

Water Quality Volume Calculations


Using the WQV formula discussed in Section C, the required WQVs for the selected BMP sites are: $1.5^{\circ}/12 \ge 0.6 \ge 0.145$ ac $\ge 1.2 = 0.013$ ac-ft for Bioswale $1.5^{\circ}/12 \ge 0.6 \ge 1.632$ ac $\ge 1.2 = 0.147$ ac-ft for Bioretention

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The water quality volume and surface area of each BMP are shown in Table I-2.

Table I-2 Water Quality Vol	and Surface Tried Of	Subbusili 510 Divit Site
BMP	WQV (ac-ft)	Surface area (ac)
Bioswale	0.0189	0.0131
Bioretention	0.1758	0.0864
Total	0.1947	
Required	0.1600	
	1 0.1 11/01/	

Table I-2 Water Quality Volume and Surface Area of Subbasin 310 BMP Site

Note: Surface area is the area at the water level of the WQV.

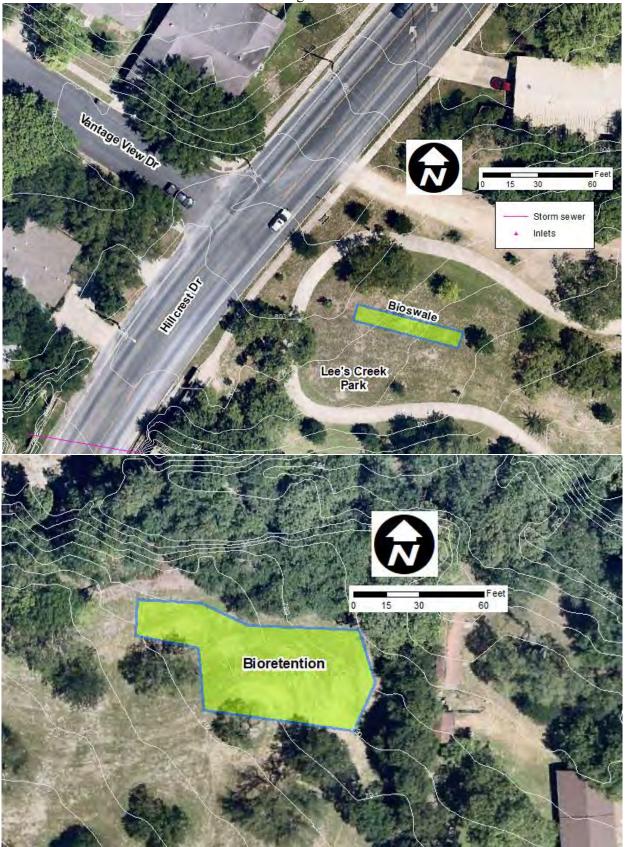


Exhibit I-1 Delineated Drainage Area to Subbasin 310 BMP Site

Exhibit I-2 Proposed BMP Layout on Subbasin 310 Site

Modeling Bioswales in HSPF

Refer to the discussion in Section E.

Page B-158 of the River Authority's LID Manual requires that a bioswale be designed to safely convey the 25-year storm event, and Page B-40 requires that flow velocity generally not exceed 1 ft/sec in mulched swales or 3 ft/sec in grassed swales. Calculations listed in Table I-3 show that the proposed bioswale meet these requirements.

The 1-5 Hydraulie I aralleters of Die	
Hydraulic Parameters	Bioswale
Length (ft)	60
Drainage area (ac)	0.175
Bottom width (ft)	5
Side slope (xH:1V)	3
Depth of swale (ft)	0.75
Manning n	0.2
Longitudinal slope	0.02
25-yr rainfall intensity (in/hr)	11
Runoff coefficient	0.90
25-yr flow (cfs)	1.73
Flow depth (ft)	0.48 < 0.75 OK
Cross section area (ft ²)	3.09
Wetted perimeter (ft)	8.04
Hydraulic radius (ft)	0.38
Velocity (ft/s)	0.56 < 1 OK

Table I-3 Hydraulic Parameters of Bioswale in USAR Subbasin 310

Modeling Bioretention in HSPF

Refer to the discussion in Section F.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table I-4 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL,

where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

Tables I-5 to I-8 list the model output annual inflows and outflows of the bioretention in Subbasin 150 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed and the corresponding removal percentages (or BMP performance) are also listed. Table I-9 shows the same set of information but for the 4-year total.

	Inf	low	Outflow						
BMP	Geomean	Flow-weighted	Geomean	Flow-weighted					
2111	(#/dL)	Geomean	(#/dL)	Geomean					
	(uL)	(#/dL)	(41)	(#/dL)					
Bioswale	44,513	9,309	7,762	8,776					
Bioretention	72,052	16,999	13,522	15,733					
Overall	69,814	16,404	12,447	15,158					

Table I-4 EC Concentrations of Subbasin 310 BMP Layouts Over 2007-2010

The constituent removal percentages were calculated in two approaches – based on individual input to a BMP and based on the total input coming from the total drainage area. The loads removed and removal percentages calculated are summarized in Table I-10 for easier comparison.

For the approach based on individual input to a BMP, the percent removal represents only the performance of the BMP in removing only the flow and loads that can enter the BMP. While this is the standard approach when evaluating BMP performance, it can be misleading when comparing BMPs because the total input to BMPs are not the same. For example, Table I-10 shows that the bioswale has a percentage removal of EC (4-year total about 51%) similar to the bioretention (4-year total about 49%) if comparing these two BMP types using the percent removal based on individual BMP inflow.

On the other hand, as listed in Table I-10 under the "Load Removed" columns, the bioswale could remove about 1.5×10^{11} EC load over the 2007 to 2010 period while the bioretention could remove from 2.6×10^{12} of EC load. Thus, when comparing BMP types it would be beneficial to also evaluate the percent load removal based on the total input from the drainage area. Because the bioswale is sized to treat a small area, the removal percentage based on total inputs is much smaller (about 3%) than that of the bioretention. The overall results are dominated by the performance of the bioretention (about 47%).

Thus, a complete BMP performance evaluation should not only compare percent load removal data, but also the size, cost, footprint area, etc. associated with the BMPs. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
Bioswale	Pond + Media	0.3885	0.3885	0.0016	0.3367	0.0502	0.0000	0.0000	0.3562	0.0320	8.2%	0.7%
	Underdrain		0.3367	0.0304		0.3061	0.0000	0.0002				
Bioretention	Pond + Media	4.4071	4.4071	0.0152	3.6120	0.7799	0.0000	0.0000	4.0743	0.3280	7.4%	6.8%
	Underdrain		3.6120	0.3127		3.2944	0.0000	0.0049				
Total		4.7956		0.3599			0.0000	0.0051	4.4305	0.3600		7.5%
	total rainfall (in)	47.927										
	drainage area (ac)	5.198										
ov	verall runoff coeff	0.231										
DACT												
BACT	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIP	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioswale	Pond + Media	103,001	103,001	12,718	85,023	5,260	0	0	50,535	52,461	50.9%	2.6%
biosituic	Underdrain	100,001	85,023	39,743	00,020	45,275	0	5	50,555	52,101	50.570	2.070
Bioretention	Pond + Media	1,949,510	1,949,510	230,052	1,527,330	192,131	0	0	1,022,535	926,974	47.5%	45.2%
	Underdrain	, <i>,</i>	1,527,330	696,924	1- 1	830,404	0	0	, , , ,	,-		
Total		2,052,511		979,437			0	5	1,073,070	979,436		47.7%
		1 1-	1	/ -					7. 7.			
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.6822	0.6822	0.0147	0.6399	0.0276	0.0000	0.0000	0.4677	0.2136	31.3%	2.8%
	Underdrain		0.6399	0.1989		0.4401	0.0000	0.0009				
Bioretention	Pond + Media	7.0176	7.0176	0.1506	6.2631	0.6039	0.0000	0.0000	4.9882	2.0267	28.9%	26.3%
	Underdrain		6.2631	1.8761		4.3843	0.0000	0.0027				
Total		7.6999		2.2403			0.0000	0.0037	5.4559	2.2403		29.1%
NH3N			1					1	1		1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.3231	0.3231	0.0388	0.2508	0.0334	0.0000	0.0000	0.1841	0.1390	43.0%	3.3%
Distatontion	Underdrain	2 0200	0.2508	0.1001	2 0172	0.1507	0.0000	0.0000	2 2202	1 5907	40.0%	27.50/
Bioretention	Pond + Media	3.9200	3.9200	0.4305	2.9172	0.5723	0.0000	0.0000	2.3303	1.5897	40.6%	37.5%
T - 4 - 1	Underdrain	4.2420	2.9172			1.7580			25444	4 7207		40 70/
Total		4.2430		1.7286			0.0000	0.0000	2.5144	1.7287		40.7%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
DIVIP	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
					0.4281	0.0434	0.0000	0.0000	0.3068	0.2096	40.6%	3.1%
Bioswale	Pond + Media	0 5164	0 5164	0.0449						0.2050	10.070	0.1/0
Bioswale	Pond + Media	0.5164	0.5164	0.0449	0.4201	0 2634			1			
	Underdrain		0.4281	0.1647		0.2634	0.0000	0.0000	3.8048	2.3529	38.2%	35.3%
	Underdrain Pond + Media	0.5164	0.4281 6.1577	0.1647 0.4982	4.8878	0.7718	0.0000	0.0000 0.0000	3.8048	2.3529	38.2%	35.3%
Bioretention	Underdrain		0.4281	0.1647			0.0000	0.0000	3.8048	2.3529	38.2%	35.3%
Bioretention	Underdrain Pond + Media	6.1577	0.4281 6.1577	0.1647 0.4982 1.8547		0.7718	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000			38.2%	
Bioretention Total	Underdrain Pond + Media	6.1577	0.4281 6.1577	0.1647 0.4982 1.8547		0.7718	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000			38.2%	
Bioretention Total	Underdrain Pond + Media	6.1577	0.4281 6.1577	0.1647 0.4982 1.8547		0.7718	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000			38.2%	38.4%
Bioretention Total ORGP	Underdrain Pond + Media Underdrain	6.1577	0.4281 6.1577 4.8878	0.1647 0.4982 1.8547 2.5625	4.8878	0.7718 3.0330	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	4.1116	2.5625		38.4%
Bioretention Total ORGP	Underdrain Pond + Media Underdrain	6.1577 6.6741 Inflow	0.4281 6.1577 4.8878	0.1647 0.4982 1.8547 2.5625	4.8878 Flow to	0.7718 3.0330	0.0000 0.0000 0.0000 0.0000 Start	0.0000 0.0000 0.0000 0.0000 End	4.1116 Outflow	2.5625 Load	% removed	38.4% % removed (based on
Bioretention Total ORGP BMP	Underdrain Pond + Media Underdrain	6.1577 6.6741 Inflow to BMP	0.4281 6.1577 4.8878 Inflow to component	0.1647 0.4982 1.8547 2.5625 Decay	4.8878 Flow to underlayer	0.7718 3.0330 Overflow	0.0000 0.0000 0.0000 0.0000 Start storage	0.0000 0.0000 0.0000 0.0000 End storage	4.1116 Outflow from BMP	2.5625 Load removed	% removed (based on	38.4% % removed (based on
Bioretention Total ORGP BMP Bioswale	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	6.1577 6.6741 Inflow to BMP (lbs) 0.2202	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668	4.8878 Flow to underlayer (lbs) 0.2061	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002	4.1116 Outflow from BMP (lbs) 0.1478	2.5625 Load removed (lbs) 0.0722	% removed (based on BMP inflow) 32.8%	38.4% % removed (based on total inflow 2.6%
Bioretention Total ORGP BMP Bioswale	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	6.1577 6.6741 Inflow to BMP (lbs)	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2001 2.5766	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623	4.8878 Flow to underlayer (lbs)	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000	4.1116 Outflow from BMP (lbs)	2.5625 Load removed (lbs)	% removed (based on BMP inflow)	38.4% % removed (based on total inflow
Bioretention Total ORGP BMP Bioswale Bioretention	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224	4.8878 Flow to underlayer (lbs) 0.2061	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	4.1116 Outflow from BMP (lbs) 0.1478 1.7914	2.5625 Load removed (lbs) 0.0722 0.7847	% removed (based on BMP inflow) 32.8%	38.4% % removed (based on total inflow 2.6% 28.1%
Bioretention Total ORGP Bioswale Bioretention	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	6.1577 6.6741 Inflow to BMP (lbs) 0.2202	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2001 2.5766	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623	4.8878 Flow to underlayer (lbs) 0.2061	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000	4.1116 Outflow from BMP (lbs) 0.1478	2.5625 Load removed (lbs) 0.0722	% removed (based on BMP inflow) 32.8%	38.4% % removed (based on total inflow 2.6%
Bioretention Total ORGP BMP Bioswale Bioretention Total	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2001 2.5766	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224	4.8878 Flow to underlayer (lbs) 0.2061	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	4.1116 Outflow from BMP (lbs) 0.1478 1.7914	2.5625 Load removed (lbs) 0.0722 0.7847	% removed (based on BMP inflow) 32.8%	38.4% % removed (based on total inflow 2.6% 28.1%
Bioretention Total ORGP BMP Bioswale Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766 2.7969	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224 0.8569	4.8878 Flow to underlayer (lbs) 0.2061 2.3058	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0000 0.0006	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569	% removed (based on BMP inflow) 32.8% 30.5%	38.4% % removed (based on total inflow 2.6% 28.1% 30.6%
Bioretention Total ORGP BMP Bioswale Bioretention Total	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766 2.7969 Inflow	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 End	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569 Load	% removed (based on BMP inflow) 32.8% 30.5%	38.4% % removed (based on total inflov 2.6% 28.1% 30.6% % removed
Bioretention Total ORGP BMP Bioswale Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain	6.1577 6.6741 Inflow to BMP ((lbs) 0.2202 2.5766 2.7969 Inflow to BMP	0.4281 6.1577 4.8878 inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058 inflow to component	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0668 0.0623 0.7224 0.8569 Decay	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to underlayer	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829 Overflow	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage ((bs) 0.0000 0.0002 0.0000 0.0006 0.0008 End storage	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow from BMP	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569 Load removed	% removed (based on BMP inflow) 32.8% 30.5% 	38.4% % remover (based on total inflow 2.6% 28.1% 30.6% % remover (based on
Bioretention Total ORGP Bioswale Bioretention Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766 2.7969 Inflow to BMP (lbs)	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058 Inflow to component (lbs)	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224 0.8569 Decay (lbs)	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to underlayer (lbs)	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829 Overflow (lbs)	0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0006 0.0008 End storage (lbs)	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow from BMP (lbs)	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569 Load removed (lbs)	% removed (based on BMP inflow) 32.8% 30.5% 	38.4% % removed (based on total inflov 2.6% 28.1% 30.6% % removed (based on total inflov
Bioretention Total ORGP BMP Bioswale Bioretention Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Components Pond + Media	6.1577 6.6741 Inflow to BMP ((lbs) 0.2202 2.5766 2.7969 Inflow to BMP	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058 Inflow to component (lbs) 0.0892	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224 0.8569 Decay (lbs) 0.8569	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to underlayer	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829 Overflow (lbs) 0.0037	0.0000 0.0000 0.0000 0.0000 Start (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 End storage (lbs) 0.0000	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow from BMP	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569 Load removed	% removed (based on BMP inflow) 32.8% 30.5% 	38.4% % removed (based on total inflow 2.6% 28.1% 30.6% % removed (based on
Total ORGP BMP Bioswale Bioretention Total ORTHOP Bioswale Bioswale	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain	6.1577 6.6741 inflow to BMP (lbs) 0.2202 2.5766 2.7969 inflow to BMP (lbs) 0.0892	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058 Inflow to component (lbs) 0.0892 0.0832	0.1647 0.4982 1.8547 2.5625 0ecay (lbs) 0.0054 0.0668 0.0623 0.7224 0.8569 Decay (lbs) 0.0022 0.0269	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to underlayer (lbs) 0.0832	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829 Overflow (lbs) 0.0037 0.0562	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0006 0.0008 End storage (lbs) 0.0000 0.0008	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow from BMP (lbs) 0.0600	2.5625 Load removed (lbs) 0.722 0.7847 0.8569 Load removed (lbs) 0.0291	% removed (based on BMP inflow) 32.8% 30.5% 30.5% % removed (based on BMP inflow) 32.7%	38.4% % removec (based on total inflow 2.6% 28.1% 30.6% % removec (based on total inflow 2.5%
Bioretention Total ORGP Bioswale Bioretention Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Components Pond + Media	6.1577 6.6741 Inflow to BMP (lbs) 0.2202 2.5766 2.7969 Inflow to BMP (lbs)	0.4281 6.1577 4.8878 Inflow to component (lbs) 0.2202 0.2061 2.5766 2.3058 Inflow to component (lbs) 0.0892	0.1647 0.4982 1.8547 2.5625 Decay (lbs) 0.0054 0.0668 0.0623 0.7224 0.8569 Decay (lbs) 0.8569	4.8878 Flow to underlayer (lbs) 0.2061 2.3058 Flow to underlayer (lbs)	0.7718 3.0330 Overflow (lbs) 0.0088 0.1390 0.2085 1.5829 Overflow (lbs) 0.0037	0.0000 0.0000 0.0000 0.0000 Start (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 End storage (lbs) 0.0000	4.1116 Outflow from BMP (lbs) 0.1478 1.7914 1.9392 Outflow from BMP (lbs)	2.5625 Load removed (lbs) 0.0722 0.7847 0.8569 Load removed (lbs)	% removed (based on BMP inflow) 32.8% 30.5% 	38.4% % removed (based on total inflow 2.6% 28.1% 30.6% % removed (based on total inflow

Table I-5 2007 Flows and Loads of Subbasin 310 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
Divil	components	to BMP	component	Evaporation	underlayer	overnow	storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioswale	Pond + Media	0.0820	0.0820	0.0002	0.0818	0.0000	0.0000	0.0000	0.0613	0.0210	25.5%	2.1%
bioswale	Underdrain	0.0820	0.0818	0.0002	0.0818	0.0613	0.0002	0.0000	0.0013	0.0210	23.370	2.170
Bioretention	Pond + Media	0.9209	0.9209	0.0023	0.9137	0.0013	0.0002	0.0000	0.7063	0.2195	23.7%	21.8%
Diorecention	Underdrain	0.9209	0.9137	0.2172	0.5157	0.7013	0.0049	0.0000	0.7003	0.2155	23.770	21.070
Tetal	onderdrain	1 0020	0.3137			0.7015			0.7675	0.2405		22.0%
Total		1.0030		0.2405			0.0051	0.0000	0.7675	0.2405	I	23.9%
	total rainfall (in)	14.221										
		5.198										
	drainage area (ac) verall runoff coeff	0.163										
0	verall runori coeri	0.163										
DACT												
BACT	Commente	1-61	1	Deserve	El	Quartheau	Charat	E a d	0.16	Land	0(0/
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component (100C)	(1040)	underlayer	(1040)	storage	storage	from BMP	removed	(based on	(based on
Dia anna la	Deved a Mardia	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioswale	Pond + Media	36,100	36,100	2,311	33,789	0	0	0	14,305	21,800	60.4%	3.1%
	Underdrain		33,789	19,489		14,305	5	0				
Bioretention	Pond + Media	659,334	659,334	48,534	608,306	2,493	0	0	273,298	386,035	58.5%	55.5%
	Underdrain		608,306	337,500		270,806	0	0				
Total		695,434		407,834			5	0	287,604	407,835		58.6%
ORGN								1	1			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.2429	0.2429	0.0025	0.2404	0.0000	0.0000	0.0000	0.1344	0.1095	44.9%	4.2%
	Underdrain		0.2404	0.1069		0.1344	0.0009	0.0000				
Bioretention	Pond + Media	2.3744	2.3744	0.0281	2.3390	0.0073	0.0000	0.0000	1.3575	1.0196	42.9%	38.9%
	Underdrain		2.3390	0.9916		1.3502	0.0027	0.0000				
Total		2.6173		1.1291			0.0037	0.0000	1.4918	1.1291		43.1%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.0824	0.0824	0.0054	0.0770	0.0000	0.0000	0.0000	0.0381	0.0443	53.8%	3.9%
Dioswaic	Underdrain	0.0024	0.0770	0.0389	0.0770	0.0381	0.0000	0.0000	0.0501	0.0445	55.676	5.570
Bioretention	Pond + Media	1.0460	1.0460	0.0385	0.9706	0.0035	0.0000	0.0000	0.5011	0.5449	52.1%	48.3%
Dioretention	Underdrain	1.0400	0.9706	0.4730	0.5700	0.4976	0.0000	0.0000	0.5011	0.5445	52.1/0	40.370
Total	onderdram	1.1284	0.5700	0.5892		0.4570	0.0000	0.0000	0.5392	0.5892		52.2%
TOLAI		1.1204		0.3692			0.0000	0.0000	0.5592	0.5652		52.270
NO3N												
	Components	Inflow	Inflow to	Deserv	Flow to	Quarflau	Chart	End	Outflow	Lood	0/ 100000100	0/
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer	<i></i> .	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.1561	0.1561	0.0069	0.1492	0.0000	0.0000	0.0000	0.0740	0.0821	52.6%	4.0%
	Underdrain		0.1492	0.0753		0.0740	0.0000	0.0000				
		4.0			4 === :			0.0	0.0			
Bioretention	Pond + Media	1.8748	1.8748	0.0925	1.7754	0.0069	0.0000	0.0000	0.9192	0.9556	51.0%	47.1%
				0.0925 0.8632	1.7754		0.0000	0.0000			51.0%	
	Pond + Media	1.8748 2.0309	1.8748	0.0925	1.7754	0.0069	0.0000		0.9192	0.9556	51.0%	51.1%
Total	Pond + Media		1.8748	0.0925 0.8632	1.7754	0.0069	0.0000	0.0000			51.0%	
Total ORGP	Pond + Media Underdrain	2.0309	1.8748 1.7754	0.0925 0.8632 1.0378		0.0069 0.9123	0.0000 0.0000 0.0000	0.0000	0.9932	1.0377		51.1%
Bioretention Total ORGP BMP	Pond + Media		1.8748	0.0925 0.8632	1.7754 Flow to	0.0069	0.0000	0.0000			51.0%	51.1%
Total ORGP	Pond + Media Underdrain	2.0309	1.8748 1.7754	0.0925 0.8632 1.0378		0.0069 0.9123 Overflow	0.0000 0.0000 0.0000	0.0000	0.9932	1.0377		51.1%
Total ORGP BMP	Pond + Media Underdrain Components	2.0309 Inflow to BMP (lbs)	1.8748 1.7754 Inflow to component (lbs)	0.0925 0.8632 1.0378 Decay (lbs)	Flow to underlayer (lbs)	0.0069 0.9123 Overflow (lbs)	0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0000 End storage (lbs)	0.9932 Outflow from BMP (lbs)	1.0377 Load removed (lbs)	% removed (based on BMP inflow)	51.1% % removed (based on total inflow
Total ORGP	Pond + Media Underdrain	2.0309 Inflow to BMP	1.8748 1.7754 Inflow to component (lbs) 0.0764	0.0925 0.8632 1.0378 Decay (lbs) 0.0010	Flow to underlayer	0.0069 0.9123 Overflow (lbs) 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0000 End storage (Ibs) 0.0000	0.9932 Outflow from BMP	1.0377 Load removed	% removed (based on	51.1% % removed (based on
Total ORGP BMP	Pond + Media Underdrain Components Pond + Media Underdrain	2.0309 Inflow to BMP (lbs)	1.8748 1.7754 Inflow to component (lbs)	0.0925 0.8632 1.0378 Decay (lbs)	Flow to underlayer (lbs)	0.0069 0.9123 Overflow (lbs)	0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0000 End storage (lbs)	0.9932 Outflow from BMP (lbs)	1.0377 Load removed (lbs)	% removed (based on BMP inflow)	51.1% % removed (based on total inflow
Total ORGP BMP Bioswale	Pond + Media Underdrain Components Pond + Media	2.0309 Inflow to BMP (lbs)	1.8748 1.7754 Inflow to component (lbs) 0.0764	0.0925 0.8632 1.0378 Decay (lbs) 0.0010	Flow to underlayer (lbs)	0.0069 0.9123 Overflow (lbs) 0.0000	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0000 End storage (Ibs) 0.0000	0.9932 Outflow from BMP (lbs)	1.0377 Load removed (lbs)	% removed (based on BMP inflow)	51.1% % removed (based on total inflow
Total ORGP BMP	Pond + Media Underdrain Components Pond + Media Underdrain	2.0309 Inflow to BMP (lbs) 0.0764	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.0754	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341	Flow to underlayer (lbs) 0.0754	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416	0.0000 0.0000 Start storage (lbs) 0.0000 0.0002	0.0000 0.0000 End storage (Ibs) 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416	1.0377 Load removed (lbs) 0.0350	% removed (based on BMP inflow) 45.7%	51.1% % removed (based on total inflow 3.7%
Total ORGP BMP Bioswale Bioretention	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.0754 0.8581	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125	Flow to underlayer (lbs) 0.0754	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416	1.0377 Load removed (lbs) 0.0350	% removed (based on BMP inflow) 45.7%	51.1% % removed (based on total inflow 3.7%
Total ORGP BMP Bioswale Bioretention	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764 0.8581	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.0754 0.8581	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622	Flow to underlayer (lbs) 0.0754	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840	1.0377 Load removed (lbs) 0.0350 0.3747	% removed (based on BMP inflow) 45.7%	51.1% % removed (based on total inflow 3.7% 40.1%
Total ORGP BMP Bioswale Bioretention Total	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764 0.8581	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.0754 0.8581	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622	Flow to underlayer (lbs) 0.0754	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840	1.0377 Load removed (lbs) 0.0350 0.3747	% removed (based on BMP inflow) 45.7%	51.1% % removed (based on total inflow 3.7% 40.1%
Total ORGP BMP Bioswale Bioretention Total	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764 0.8581	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.0754 0.8581	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622	Flow to underlayer (lbs) 0.0754	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840	1.0377 Load removed (lbs) 0.0350 0.3747	% removed (based on BMP inflow) 45.7%	51.1% % removed (based on total inflow 3.7% 40.1% 43.8%
Total ORGP BMP Bioswale Bioretention Total ORTHOP	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow	1.8748 1.7754 Inflow to component (lbs) 0.0754 0.0754 0.8581 0.8428	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098	Flow to underlayer (lbs) 0.0754 0.8428 Flow to	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0006 0.0008 Start	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 End	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load	% removed (based on BMP inflow) 45.7% 43.6%	51.1% % removed (based on total inflow 3.7% 40.1% 43.8% % removed
Total ORGP BMP Bioswale Bioretention Total ORTHOP	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow to BMP	1.8748 1.7754 	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098 Decay	Flow to underlayer (lbs) 0.0754 0.8428 Flow to underlayer	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812 Overflow	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0006 0.0008 Start storage	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 End storage	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow from BMP	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load removed	% removed (based on BMP inflow) 45.7% 43.6% 	51.1% % removec (based on total inflow 3.7% 40.1% 40.1% 43.8% % removec (based on
Total ORGP BMP Bioswale Bioretention Total ORTHOP BMP	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow to BMP (lbs)	1.8748 1.7754 Inflow to component (lbs) 0.0764 0.8581 0.8581 0.8428 Inflow to component (lbs)	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098 Decay (lbs)	Flow to underlayer (lbs) 0.0754 0.8428 Flow to underlayer (lbs)	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812 Overflow (lbs)	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0006 0.0008 Start storage (lbs)	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 End storage (lbs)	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow from BMP (lbs)	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load removed (lbs)	% removed (based on BMP inflow) 45.7% 43.6% % removed (based on BMP inflow)	51.1% % removed (based on total inflow 3.7% 40.1% 43.8% % removed (based on total inflow
Total ORGP BMP Bioswale Bioretention Total ORTHOP	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow to BMP	1.8748 1.7754 Inflow to component (lbs) 0.0754 0.8581 0.8428 Inflow to component (lbs) 0.0302	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098 Decay (lbs) 0.0004	Flow to underlayer (lbs) 0.0754 0.8428 Flow to underlayer	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812 Overflow (lbs) 0.0000	0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 Start storage (lbs) 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow from BMP	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load removed	% removed (based on BMP inflow) 45.7% 43.6% 	51.1% % removec (based on total inflow 3.7% 40.1% 40.1% 43.8% % removec (based on
Total ORGP BMP Bioswale Bioretention Total ORTHOP Bioswale Bioswale	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Components	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow to BMP (lbs) 0.0302	1.8748 1.7754 Inflow to component (lbs) 0.0754 0.8581 0.8428 Inflow to component (lbs) 0.0302 0.0299	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098 Decay (lbs) 0.0004 0.0135	Flow to underlayer (lbs) 0.0754 0.8428 Flow to underlayer (lbs) 0.0299	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812 Overflow (lbs) 0.0000 0.0164	0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 Start storage (lbs) 0.0000 0.0001	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow from BMP (lbs) 0.0164	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load removed (lbs) 0.0139	% removed (based on BMP inflow) 45.7% 43.6% 	51.1% % removed (based on total inflow 3.7% 40.1% 43.8% % removed (based on total inflow 3.8%
Total ORGP BMP Bioswale Bioretention Total ORTHOP BMP	Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	2.0309 Inflow to BMP (lbs) 0.0764 0.8581 0.9345 Inflow to BMP (lbs)	1.8748 1.7754 Inflow to component (lbs) 0.0754 0.8581 0.8428 Inflow to component (lbs) 0.0302	0.0925 0.8632 1.0378 Decay (lbs) 0.0010 0.0341 0.0125 0.3622 0.4098 Decay (lbs) 0.0004	Flow to underlayer (lbs) 0.0754 0.8428 Flow to underlayer (lbs)	0.0069 0.9123 Overflow (lbs) 0.0000 0.0416 0.0027 0.4812 Overflow (lbs) 0.0000	0.0000 0.0000 Start storage (lbs) 0.0000 0.0002 0.0000 0.0006 0.0008 Start storage (lbs) 0.0000	0.0000 0.0000 End storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9932 Outflow from BMP (lbs) 0.0416 0.4840 0.5255 Outflow from BMP (lbs)	1.0377 Load removed (lbs) 0.0350 0.3747 0.4098 Load removed (lbs)	% removed (based on BMP inflow) 45.7% 43.6% % removed (based on BMP inflow)	51.1% % removed (based on total inflow 3.7% 40.1% 43.8% % removed (based on total inflow

Table I-6 2008 Flows and Loads of Subbasin 310 BMP Performance Evaluation Modeling

BMP	Components	Inflow to BMP	Inflow to component	Evaporation	Flow to underlayer	Overflow	Start storage	End storage	Outflow from BMP	Flow removed	% removed (based on	% remove (based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioswale	Pond + Media	0.2428	0.2428	0.0008	0.1990	0.0430	0.0000	0.0000	0.2177	0.0210	8.7%	0.7%
loswale	Underdrain	0.2420	0.1990	0.0202	0.1550	0.1746	0.0000	0.0041	0.2177	0.0210	0.770	0.778
Bioretention	Pond + Media	2.7393	2.7393	0.0202	2.1890	0.5426	0.0000	0.0000	2.4792	0.2178	8.0%	7.3%
	Underdrain	2.7000	2.1890	0.2100	2.1050	1.9367	0.0000	0.0423	2.0.52	0.2170	0.070	7.570
Total	onderdidin	2.9821	2.1050	0.2388		1.5507	0.0000	0.0464	2.6969	0.2388		8.0%
lotal		2.5021	1	0.2000		I	0.0000	0.0101	2.0505	0.2000	1	0.070
	total rainfall (in) drainage area (ac) verall runoff coeff	31.205 5.198 0.221										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioswale	Pond + Media	69,198	69,198	7,243	59,598	2,358	0	0	34,104	34,966	50.5%	2.6%
	Underdrain		59,598	27,717		31,746	0	128				
Bioretention	Pond + Media	1,283,549	1,283,549	152,001	1,068,950	62,599	0	0	644,533	636,710	49.6%	47.1%
	Underdrain		1,068,950	484,603		581,935	0	2,306				
Fotal		1,352,748		671,564			0	2,434	678,638	671,676		49.7%
									-			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIP	components			Decay	underlayer	Overnow					% removed (based on	
		to BMP	component (lbc)	(164)		(16-2)	storage (lbc)	storage (lbc)	from BMP	removed (lbc)		(based o
Diagonal -	Danal 1 54-1	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.4510	0.4510	0.0075	0.4339	0.0096	0.0000	0.0000	0.2858	0.1559	34.6%	3.1%
	Underdrain		0.4339	0.1483		0.2762	0.0000	0.0093	0.004.5		22.00/	20.00/
Bioretention	Pond + Media	4.5040	4.5040	0.0884	4.2400	0.1756	0.0000	0.0000	2.9316	1.4823	32.9%	29.9%
	Underdrain		4.2400	1.3931		2.7561	0.0000	0.0901				
Total		4.9550		1.6373			0.0000	0.0994	3.2175	1.6381		33.1%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.2026	0.2026	0.0208	0.1516	0.0301	0.0000	0.0000	0.1216	0.0805	39.7%	3.0%
	Underdrain		0.1516	0.0597		0.0915	0.0000	0.0004				
Bioretention	Pond + Media	2.4561	2.4561	0.2681	1.8056	0.3824	0.0000	0.0000	1.4736	0.9774	39.8%	36.8%
	Underdrain		1.8056	0.7091		1.0913	0.0000	0.0051				
Total		2.6587		1.0577			0.0000	0.0055	1.5953	1.0579		39.8%
NO3N	_		1						-			
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioswale	Pond + Media	0.3345	0.3345	0.0240	0.2780	0.0325	0.0000	0.0000	0.2008	0.1322	39.5%	3.1%
	Underdrain		0.2780	0.1081		0.1683	0.0000	0.0015				
Bioretention	Pond + Media	3.9873	3.9873	0.3108	3.2538	0.4226	0.0000	0.0000	2.4173	1.5518	38.9%	35.9%
	Underdrain		3.2538	1.2405		1.9946	0.0000	0.0182				
Гotal		4.3218		1.6834			0.0000	0.0197	2.6181	1.6840		39.0%
									-			
ORGP			1			I	I	1	1	I	1	1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.1436	0.1436	0.0028	0.1378	0.0031	0.0000	0.0000	0.0897	0.0514	35.8%	2.9%
	Underdrain		0.1378	0.0486		0.0866	0.0000	0.0026				
Bioretention	Pond + Media	1.6421	1.6421	0.0374	1.5460	0.0587	0.0000	0.0000	1.0512	0.5628	34.3%	31.5%
	Underdrain		1.5460	0.5252		0.9925	0.0000	0.0280				
Fotal		1.7857		0.6140			0.0000	0.0306	1.1409	0.6142		34.4%
ORTHOP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
DIVIE	components	to BMP	component	Decay	underlayer	Over now			from BMP	removed	(based on	(based o
				(164)		(16-2)	storage (lbc)	storage (lbc)			(based on BMP inflow)	
Die eurol -	Donal 1 54-1	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Pond + Media	0.0571	0.0571	0.0011	0.0546	0.0014	0.0000	0.0000	0.0357	0.0204	35.7%	2.8%
	Underdrain		0.0546	0.0192	0.0171	0.0343	0.0000	0.0010				
		0.6679	0.6679	0.0154	0.6194	0.0331	0.0000	0.0000	0.4319	0.2247	33.6%	31.0%
Bioretention	Pond + Media	0.0075							1			
Bioretention	Pond + Media Underdrain	0.7249	0.6194	0.2092		0.3989	0.0000	0.0113	0.4676	0.2450		33.8%

Table I-7 2009 Flows and Loads of Subbasin 310 BMP Performance Evaluation Modeling

FLOW			1			I		1	T	I	1	
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflov
Bioswale	Pond + Media	0.3259	0.3259	0.0014	0.2714	0.0531	0.0000	0.0000	0.2993	0.0297	9.0%	0.7%
	Underdrain		0.2714	0.0283		0.2461	0.0041	0.0011				
Bioretention	Pond + Media	3.6717	3.6717	0.0120	2.8344	0.8253	0.0000	0.0000	3.3976	0.3039	8.2%	7.5%
	Underdrain		2.8344	0.2918		2.5723	0.0423	0.0126				
Total		3.9976		0.3335			0.0464	0.0137	3.6968	0.3335		8.2%
	•											
	total rainfall (in)	37.961										
	drainage area (ac)	5.198										
0	verall runoff coeff	0.243										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflow
Bioswale	Pond + Media	79,448	79,448	14,396	59,781	5,270	0	0	39,910	38,139	47.9%	2.5%
biosware	Underdrain	,,,,,,,	59,781	23,749	55,761	34,640	128	1,527	35,510	50,155	47.570	2.570
Bioretention	Pond + Media	1,470,164	1,470,164	245,765	1,045,455	178,945	0	0	786,827	684,489	46.5%	44.1%
BIOTELETICIOTI	Underdrain	1,470,104			1,045,455				/60,62/	004,409	40.5%	44.170
Tatal	Underdrain	4 540 510	1,045,455	438,780	1	607,882	2,306	1,154	026 727	700 000		40.004
Total		1,549,612		722,690			2,434	2,681	826,737	722,628	1	46.6%
0000												
ORGN	1-						-				1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.4865	0.4865	0.0167	0.4421	0.0278	0.0000	0.0000	0.3402	0.1408	28.4%	2.6%
	Underdrain		0.4421	0.1242		0.3125	0.0093	0.0149				
Bioretention	Pond + Media	4.8511	4.8511	0.1538	4.1653	0.5320	0.0000	0.0000	3.4864	1.3710	27.7%	25.2%
	Underdrain		4.1653	1.2172		2.9544	0.0901	0.0838				
Total		5.3376		1.5118			0.0994	0.0987	3.8266	1.5117		27.8%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.2480	0.2480	0.0427	0.1689	0.0365	0.0000	0.0000	0.1438	0.1016	40.9%	3.2%
BIOSWale	Underdrain	0.2460	0.1689		0.1089		0.0004		0.1436	0.1010	40.9%	5.270
Bioretention		2.9324	2.9324	0.0590	1.8898	0.1073	0.0004	0.0030	1.7988	1.1360	20.70/	35.7%
Bioretention	Pond + Media	2.9324			1.0090	0.5982		0.0000	1.7988	1.1360	38.7%	35.7%
	Underdrain		1.8898	0.6917		1.2006	0.0051	0.0027				
Total		3.1804		1.2377			0.0055	0.0058	1.9426	1.2376		38.8%
NO3N			1			1		1	1	1	1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
	-	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.3831	0.3831	0.0481	0.2932	0.0417	0.0000	0.0000	0.2334	0.1441	37.5%	2.9%
	Underdrain		0.2932	0.0961		0.1917	0.0015	0.0070				
Bioretention	Pond + Media	4.5442	4.5442	0.5119	3.2995	0.7329	0.0000	0.0000	2.8822	1.6676	36.5%	33.7%
	Underdrain		3.2995	1.1558		2.1494	0.0182	0.0126				
Total		4.9273		1.8119			0.0197	0.0197	3.1156	1.8117		36.6%
	•							•			•	
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
	ponento	to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
		(cui)	0.1547	0.0059	0.1400	0.0087	0.0000	0.0000	0.1057	0.0472	30.0%	2.4%
Bioswale	Pond + Media	0 15/17			0.1400	0.0087	0.0000	0.0000	0.105/	0.0472	30.0%	2.470
Bioswale	Pond + Media	0.1547		0.0/12		0.0970		0.0044	1.2423	0 5 201	29.4%	27 10/
	Underdrain		0.1400	0.0413	1 5200	0 105 2			1.2423	0.5291	29.4%	27.1%
Bioswale Bioretention	Underdrain Pond + Media	0.1547	0.1400 1.7688	0.0628	1.5209	0.1852	0.0000					
Bioretention	Underdrain	1.7688	0.1400	0.0628 0.4664	1.5209	0.1852 1.0571	0.0280	0.0254				
	Underdrain Pond + Media		0.1400 1.7688	0.0628	1.5209				1.3480	0.5763		29.5%
Bioretention Total	Underdrain Pond + Media	1.7688	0.1400 1.7688	0.0628 0.4664	1.5209		0.0280	0.0254		0.5763		29.5%
Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain	1.7688	0.1400 1.7688 1.5209	0.0628 0.4664 0.5764		1.0571	0.0280	0.0254 0.0298	1.3480			
Bioretention Total	Underdrain Pond + Media	1.7688	0.1400 1.7688	0.0628 0.4664	1.5209 Flow to		0.0280	0.0254		0.5763 Load	% removed	
Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain	1.7688	0.1400 1.7688 1.5209	0.0628 0.4664 0.5764		1.0571	0.0280	0.0254 0.0298	1.3480			
Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain	1.7688 1.9235 Inflow	0.1400 1.7688 1.5209	0.0628 0.4664 0.5764	Flow to	1.0571	0.0280 0.0306 Start	0.0254 0.0298 End	1.3480 Outflow	Load	% removed	% removed (based on
Bioretention Total ORTHOP	Underdrain Pond + Media Underdrain	1.7688 1.9235 Inflow to BMP	0.1400 1.7688 1.5209	0.0628 0.4664 0.5764 Decay	Flow to underlayer	1.0571 Overflow	0.0280 0.0306 Start storage	0.0254 0.0298 End storage	1.3480 Outflow from BMP	Load removed	% removed (based on	% removed (based on
Bioretention Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components	1.7688 1.9235 Inflow to BMP (lbs)	0.1400 1.7688 1.5209	0.0628 0.4664 0.5764 Decay (lbs)	Flow to underlayer (lbs)	1.0571 Overflow (Ibs)	0.0280 0.0306 Start storage (lbs)	0.0254 0.0298 End storage (lbs)	0utflow from BMP (lbs)	Load removed (lbs)	% removed (based on BMP inflow)	% removed (based on total inflow
Bioretention Total ORTHOP BMP Bioswale	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	1.7688 1.9235 Inflow to BMP (lbs) 0.0616	0.1400 1.7688 1.5209 Inflow to component (lbs) 0.0616 0.0556	0.0628 0.4664 0.5764 Decay (lbs) 0.0024 0.0163	Flow to underlayer (lbs) 0.0556	1.0571 Overflow (lbs) 0.0037 0.0385	0.0280 0.0306 Start storage (lbs) 0.0000 0.0010	0.0254 0.0298 End storage (lbs) 0.0000 0.0017	1.3480 Outflow from BMP (lbs) 0.0422	Load removed (lbs) 0.0187	% removed (based on BMP inflow) 29.8%	% removed (based on total inflow 2.3%
Bioretention Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	1.7688 1.9235 Inflow to BMP (lbs)	0.1400 1.7688 1.5209 Inflow to component (lbs) 0.0616	0.0628 0.4664 0.5764 Decay (lbs) 0.0024	Flow to underlayer (lbs)	1.0571 Overflow (lbs) 0.0037	0.0280 0.0306 Start storage (lbs) 0.0000	0.0254 0.0298 End storage (lbs) 0.0000	0utflow from BMP (lbs)	Load removed (lbs)	% removed (based on BMP inflow)	% removed (based on total inflow

Table I-8 2010 Flows and Loads of Subbasin 310 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
	_	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioswale	Pond + Media	1.0392	1.0392	0.0040	0.8889	0.1463	0.0000	0.0000	0.9344	0.1037	10.0%	0.8%
	Underdrain		0.8889	0.0997		0.7881	0.0000	0.0011				
Bioretention	Pond + Media	11.7390	11.7390	0.0374	9.5490	2.1526	0.0000	0.0000	10.6573	1.0691	9.1%	8.4%
	Underdrain		9.5490	1.0317		8.5047	0.0000	0.0126				
Total		12.7783		1.1728			0.0000	0.0137	11.5918	1.1728		9.2%
	total rainfall (in)	121 214										
	total rainfall (in) drainage area (ac)	131.314 5.198										
	verall runoff coeff	0.225										
0	verail runorr coerr	0.225										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioswale	Pond + Media	287,747	287,747	36,668	238,190	12,889	0	0	138,855	147,366	51.2%	2.6%
	Underdrain		238,190	110,698		125,966	0	1,527				
Bioretention	Pond + Media	5,362,557	5,362,557	676,352	4,250,042	436,167	0	0	2,727,194	2,634,209	49.1%	46.6%
	Underdrain		4,250,042	1,957,807		2,291,027	0	1,154				
Total		5,650,304		2,781,525			0	2,681	2,866,049	2,781,575		49.2%
										-	•	
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	1.8627	1.8627	0.0415	1.7563	0.0649	0.0000	0.0000	1.2281	0.6197	33.3%	3.0%
	Underdrain		1.7563	0.5782		1.1632	0.0000	0.0149				
Bioretention	Pond + Media	18.7471	18.7471	0.4209	17.0074	1.3188	0.0000	0.0000	12.7637	5.8996	31.5%	28.6%
	Underdrain		17.0074	5.4780		11.4449	0.0000	0.0838				
Total		20.6098		6.5186			0.0000	0.0987	13.9918	6.5193		31.6%
NH3N			1			1		1	1	1	1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.8561	0.8561	0.1078	0.6483	0.1000	0.0000	0.0000	0.4876	0.3655	42.7%	3.3%
Di	Underdrain	40.0544	0.6483	0.2577	7 5000	0.3876	0.0000	0.0030	6 4020	4 3 4 7 0	44.00/	27.00/
Bioretention	Pond + Media	10.3544	10.3544	1.2150	7.5832	1.5563	0.0000	0.0000	6.1038	4.2479	41.0%	37.9%
T-+-!	Underdrain	44.2405	7.5832	3.0329		4.5475			6 504.4	4 6424		41.2%
Total		11.2105		4.6133			0.0000	0.0058	6.5914	4.6134		41.2%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
Divil	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	1.3901	1.3901	0.1239	1.1484	0.1177	0.0000	0.0000	0.8150	0.5680	40.9%	3.2%
	Underdrain		1.1484	0.4441		0.6973	0.0000	0.0070				
Bioretention	Pond + Media	16.5640	16.5640	1.4133	13.2165	1.9342	0.0000	0.0000	10.0235	6.5279	39.4%	36.4%
	Underdrain		13.2165	5.1142		8.0893	0.0000	0.0126				
Total		17.9541		7.0955			0.0000	0.0197	10.8385	7.0959		39.5%
			1								1	
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioswale	Pond + Media	0.5950	0.5950	0.0151	0.5593	0.0206	0.0000	0.0000	0.3847	0.2059	34.6%	2.8%
	Underdrain		0.5593	0.1908		0.3642	0.0000	0.0044	1			
Bioretention	Pond + Media	6.8456	6.8456	0.1750	6.2155	0.4552	0.0000	0.0000	4.5689	2.2513	32.9%	30.3%
	Underdrain		6.2155	2.0761		4.1137	0.0000	0.0254				
Total		7.4406		2.4570			0.0000	0.0298	4.9536	2.4572		33.0%
ORTHOP						r		1	1	r	1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioswale	Pond + Media	0.2381	0.2381	0.0061	0.2233	0.0088	0.0000	0.0000	0.1543	0.0821	34.5%	2.7%
	Lindordroin		0.2233	0.0760		0.1455	0.0000	0.0017				
	Underdrain											
Bioretention	Pond + Media	2.8269	2.8269	0.0745	2.5299	0.2225	0.0000	0.0000	1.9055	0.9112	32.2%	29.7%
		2.8269	2.8269 2.5299	0.0745 0.8366	2.5299	0.2225	0.0000	0.0000	1.9055	0.9112	32.2%	29.7%

Table I-9 2007-2010 Flows and Loads of Subbasin 310 BMP Performance Evaluation Modeling

Table I-10 Summary of Flow and Load Removed of Subbasin 310 BMP Performance Evaluation Modeling

								C							
FLOW															
BMP		Flow	removed (a	ic-ft)			% removed	d (based on E	BMP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.0320	0.0210	0.0210	0.0297	0.1037	8.2%	25.5%	8.7%	9.0%	10.0%	0.7%	2.1%	0.7%	0.7%	0.8%
Bioretention	0.3280	0.2195	0.2178	0.3039	1.0691	7.4%	23.7%	8.0%	8.2%	9.1%	6.8%	21.8%	7.3%	7.5%	8.4%
Total	0.3600	0.2405	0.2388	0.3335	1.1728						7.5%	23.9%	8.0%	8.2%	9.2%

BACT															
BMP		Load	l removed (1	.0^6)			% removed	l (based on B	MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	52,461	21,800	34,966	38,139	147,366	50.9%	60.4%	50.5%	47.9%	51.2%	2.6%	3.1%	2.6%	2.5%	2.6%
Bioretention	926,974	386,035	636,710	684,489	2,634,209	47.5%	58.5%	49.6%	46.5%	49.1%	45.2%	55.5%	47.1%	44.1%	46.6%
Total	979,436	407,835	671,676	722,628	2,781,575						47.7%	58.6%	49.7%	46.6%	49.2%

ORGN

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.2136	0.1095	0.1559	0.1408	0.6197	31.3%	44.9%	34.6%	28.4%	33.3%	2.8%	4.2%	3.1%	2.6%	3.0%
Bioretention	2.0267	1.0196	1.4823	1.3710	5.8996	28.9%	42.9%	32.9%	27.7%	31.5%	26.3%	38.9%	29.9%	25.2%	28.6%
Total	2.2403	1.1291	1.6381	1.5117	6.5193						29.1%	43.1%	33.1%	27.8%	31.6%

NH3N

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.1390	0.0443	0.0805	0.1016	0.3655	43.0%	53.8%	39.7%	40.9%	42.7%	3.3%	3.9%	3.0%	3.2%	3.3%
Bioretention	1.5897	0.5449	0.9774	1.1360	4.2479	40.6%	52.1%	39.8%	38.7%	41.0%	37.5%	48.3%	36.8%	35.7%	37.9%
Total	1.7287	0.5892	1.0579	1.2376	4.6134						40.7%	52.2%	39.8%	38.8%	41.2%

NO3N

BMP		Loa	d removed (lbs)			% removed	(based on B	MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.2096	0.0821	0.1322	0.1441	0.5680	40.6%	52.6%	39.5%	37.5%	40.9%	3.1%	4.0%	3.1%	2.9%	3.2%
Bioretention	2.3529	0.9556	1.5518	1.6676	6.5279	38.2%	51.0%	38.9%	36.5%	39.4%	35.3%	47.1%	35.9%	33.7%	36.4%
Total	2.5625	1.0377	1.6840	1.8117	7.0959						38.4%	51.1%	39.0%	36.6%	39.5%

ORGP

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.0722	0.0350	0.0514	0.0472	0.2059	32.8%	45.7%	35.8%	30.0%	34.6%	2.6%	3.7%	2.9%	2.4%	2.8%
Bioretention	0.7847	0.3747	0.5628	0.5291	2.2513	30.5%	43.6%	34.3%	29.4%	32.9%	28.1%	40.1%	31.5%	27.1%	30.3%
Total	0.8569	0.4098	0.6142	0.5763	2.4572						30.6%	43.8%	34.4%	29.5%	33.0%

ORTHOP

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioswale	0.0291	0.0139	0.0204	0.0187	0.0821	32.7%	45.9%	35.7%	29.8%	34.5%	2.5%	3.8%	2.8%	2.3%	2.7%
Bioretention	0.3247	0.1489	0.2247	0.2129	0.9112	29.6%	43.8%	33.6%	29.0%	32.2%	27.4%	40.2%	31.0%	26.8%	29.7%
Total	0.3538	0.1628	0.2450	0.2316	0.9933						29.8%	44.0%	33.8%	29.1%	32.4%

J. Subbasin 330 BMP Performance Evaluation Modeling

Site Description and Land uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 330 is at the Pin Oak II Apartments between Oaklawn Dr and Pin Oak Dr as shown in Exhibit J-1.

Following evaluation of site conditions and discussion with the River Authority, two bioretention areas were proposed (Bioretention N and Bioretention S) as shown in Exhibits J-1 and J-2. Based on the size classification in the BMP Tool Database, both were considered "average."

The drainage area to each bioretention was delineated using Arc Hydro and the DEM data provided by the River Authority. The areas were determined to be 1.187 acres for Bioretention N and 0.995 acre for Bioretention S. As shown in Exhibit J-1, the land use in the delineated drainage area includes mostly multi-family residential and commercial.

The land uses and their corresponding impervious cover percentages from the 2017 land use data provided by the River Authority are used to determine the pervious (Per.) and impervious (Imp.) areas within the delineated drainage areas, as listed in Table J-1.

Land use	IC%	Bi	oretention	N	IC%	В	ioretention	S
		Per.	Imp.	Total		Per.	Imp.	Total
		Area	Area	Area		Area	Area	Area
		(ac)	(ac)	(ac)		(ac)	(ac)	(ac)
Residential Multi-family	75	0.219	0.658	0.877	75	0.114	0.343	0.457
Commercial	90	0.031	0.279	0.310	90	0.054	0.484	0.538
TOTAL	78.9	0.250	0.937	1.187	83.1	0.168	0.827	0.995

Table J-1 Land uses of Subbasin 330 BMP Sites

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQVs for the selected BMP sites are: $1.5^{"}/12 \ge 0.6 \ge 0.937$ ac $\ge 1.2 = 0.084$ ac-ft for Bioretention N $1.5^{"}/12 \ge 0.6 \ge 0.827$ ac $\ge 1.2 = 0.074$ ac-ft for Bioretention S

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The water quality volume and surface area of each BMP are shown in Table J-2.

Table J-2 Water Quality Vol	unie and Surface Area of	Subbasili 550 Divir Sile
BMP	WQV (ac-ft)	Surface area (ac)
Bioretention N	0.0982	0.0505
Bioretention S	0.0882	0.0487
Total	0.1864	
Required	0.1580	

Table J-2 Water	Quality V	⁷ olume and	Surface Area	of Subbasin	330 BMP	Site
-----------------	-----------	------------------------	--------------	-------------	---------	------

Note: Surface area is the area at the water level of the WQV.

Exhibit J-1 Delineated Drainage Area to Subbasin 330 BMP Site

Exhibit J-2 Proposed BMP Layout on Subbasin 330 Site

Modeling Bioretention in HSPF

Refer to the discussion in Section F. As in the other cases, Bioretention S is on Type D soil. However, Bioretention N is on Type C soil. An infiltration rate of 0.1 in/hr (USACE, 2000) was assumed for the underlying soil of Bioretention N. This 0.1 in/hr refers to the infiltration rate of the underlying HSG Type C soil beneath the underdrain. The Hydrologic Modeling System-Hydrologic Engineering Center (HEC-HMS) Technical Manual indicates that for Type C soil, infiltration rate is 0.05-0.15 in/hr. Therefore, a 0.1 in/hr infiltration rate was selected for the underlying Type C soil.

Note that a 1.5 in/hr infiltration rate was selected for infiltration through the bioretention soil media above the underdrain. The River Authority's LID Manual indicates that this infiltration rate should range from 1 to 6 in/hr, and the recommended rate is 1-2 in/hr (see page B-36 of the Manual). Therefore, a 1.5 in/hr infiltration rate was selected for the bioretention soil media above the underdrain.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table J-3 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

	Inf	low	Out	flow
BMP	Geomean (#/dL)	Flow-weighted Geomean (#/dL)	Geomean (#/dL)	Flow-weighted Geomean (#/dL)
Bioretention N	73,941	14,747	16,202	13,835
Bioretention S	61,555	12,148	10,914	12,141
Overall	68,134	13,530	11,508	13,036

Table J-3 EC Concentrations of Subbasin 310 BMP Layouts Over 2007-2010

Tables J-4 to J-7 list the model output annual inflows and outflows of the bioretention in Subbasin 330 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed, and the corresponding removal percentages (or BMP performance) are also listed. Table J-8 shows the same set of information but for the 4-year total.

The constituent removal percentages were calculated in two approaches – based on individual input to a BMP and based on the total input coming from the total drainage area. The loads removed and removal percentages calculated are summarized in Table J-9 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

The two BMPs are similar in design. The higher removal percentages of Bioretention N are the result of water and constituents removed due to infiltration.

FLOW												
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflo
lioretention N	Pond + Media	2.5030	2.5030	0.0087	2.0479	0.4465	0.0000	0.0000	1.7210	0.7820	31.2%	16.6%
	Underdrain		2.0479	0.0487	0.7246	1.2745	0.0000	0.0000				
Bioretention S	Pond + Media	2.2100	2.2100	0.0079	1.8173	0.3849	0.0000	0.0000	2.0468	0.1602	7.3%	3.4%
	Underdrain		1.8173	0.1524		1.6619	0.0000	0.0030				
Total		4.7131		0.2176			0.0000	0.0030	3.7678	0.9423		20.0%
			•								•	
	total rainfall (in)	47.927										
d	rainage area (ac)	2.184										
	erall runoff coeff	0.540										
		0.510										
ВАСТ												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
Divil	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	(based on	(based or
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		(10^6)	BMP inflow)	total inflo
Disvotontion N	Dand Madia								(10^6)			
Bioretention N	Pond + Media	1,091,300	1,091,300	129,170	859,907	102,223	0	0	427,249	664,051	60.8%	35.1%
	Underdrain		859,907	331,391	203,490	325,026	0	0				
Bioretention S	Pond + Media	800,363	800,363	96,386	631,875	72,100	0	0	417,281	383,081	47.9%	20.3%
	Underdrain		631,875	286,694		345,182	0	0				
Total		1,891,662		843,639			0	0	844,530	1,047,132		55.4%
ORGN	-		-									
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention N	Pond + Media	4.4228	4.4228	0.0934	3.9987	0.3307	0.0000	0.0000	2.1502	2.2726	51.4%	27.3%
	Underdrain	_	3.9987	0.4555	1.7238	1.8195	0.0000	0.0000		-		
Bioretention S	Pond + Media	3.9003	3.9003	0.0838	3.5368	0.2797	0.0000	0.0000	2.7625	1.1370	29.2%	13.7%
biorecentions	Underdrain	5.5005	3.5368	1.0532	3.5500	2.4828	0.0000	0.0008	2.7025	1.1570	25.270	13.770
Tatal	Underdram	0 2221	3.3308			2.4020			4.0120	3,4000		41.00/
Total		8.3231		1.6859			0.0000	0.0008	4.9126	3.4096		41.0%
NH3N							a		0.10		- A	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention N	Pond + Media	2.2736	2.2736	0.2506	1.6979	0.3252	0.0000	0.0000	1.0834	1.1903	52.4%	27.8%
	Underdrain		1.6979	0.5610	0.3787	0.7582	0.0000	0.0000				
Bioretention S	Pond + Media	2.0069	2.0069	0.2253	1.5022	0.2794	0.0000	0.0000	1.1876	0.8193	40.8%	19.1%
	Underdrain		1.5022	0.5940		0.9081	0.0000	0.0000	1			
Total		4.2805		1.6309			0.0000	0.0000	2.2709	2.0096		46.9%
								•			•	
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention N	Pond + Media	3.5861	3.5861	0.2958	2.8395	0.4508	0.0000	0.0000	1.7342	1.8519	51.6%	27.4%
BIOTELETILIOTTIN		5.5601							1.7542	1.0319	51.0%	27.470
Dia	Underdrain		2.8395	0.7822	0.7739	1.2834	0.0000	0.0000	4 0====	4 2077		47.000
Bioretention S	Pond + Media	3.1664	3.1664	0.2662	2.5139	0.3863	0.0000	0.0000	1.9576	1.2088	38.2%	17.9%
	Underdrain		2.5139	0.9426	1	1.5713	0.0000	0.0000				
Total		6.7525		2.2868			0.0000	0.0000	3.6918	3.0607		45.3%
ORGP											1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
		1.4184	1.4184	0.0341	1.2810	0.1034	0.0000	0.0000	0.6785	0.7398	52.2%	27.7%
Bioretention N	Pond + Media		1.2810	0.1673	0.5385	0.5752	0.0000	0.0000	1			
Bioretention N	Underdrain				1.1329	0.0875	0.0000	0.0000	0.8682	0.3826	30.6%	14.3%
	Underdrain	1.2510	1.2510	0.0306			0.0000	0.0001				
	Underdrain Pond + Media	1.2510	1.2510	0.0306								42.1%
Bioretention S	Underdrain		1.2510 1.1329	0.3521		0.7807	0 0000	0.0001	1 5467	1 1 2 2 5		74.1/0
Bioretention S	Underdrain Pond + Media	1.2510 2.6693				0.7807	0.0000	0.0001	1.5467	1.1225		
Bioretention S	Underdrain Pond + Media			0.3521		0.7807	0.0000	0.0001	1.5467	1.1225		
Bioretention S Total ORTHOP	Underdrain Pond + Media Underdrain	2.6693	1.1329	0.3521 0.5840	Flow to			1			% removed	% romour
Bioretention S	Underdrain Pond + Media	2.6693 Inflow	1.1329 Inflow to	0.3521	Flow to	Overflow	Start	End	Outflow	Load	% removed	
Bioretention S Total ORTHOP	Underdrain Pond + Media Underdrain	2.6693 Inflow to BMP	1.1329 Inflow to component	0.3521 0.5840 Decay	underlayer	Overflow	Start storage	End storage	Outflow from BMP	Load removed	(based on	(based on
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components	2.6693 Inflow to BMP (lbs)	1.1329 Inflow to component (lbs)	0.3521 0.5840 Decay (Ibs)	underlayer (lbs)	Overflow (lbs)	Start storage (Ibs)	End storage (Ibs)	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	(based on total inflov
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	2.6693 Inflow to BMP	1.1329 Inflow to component (lbs) 0.5736	0.3521 0.5840 Decay (lbs) 0.0140	underlayer (lbs) 0.5171	Overflow (lbs) 0.0425	Start storage (Ibs) 0.0000	End storage (lbs) 0.0000	Outflow from BMP	Load removed	(based on	(based on
Bioretention N	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	2.6693 Inflow to BMP (lbs) 0.5736	1.1329 Inflow to component (lbs) 0.5736 0.5171	0.3521 0.5840 Decay (lbs) 0.0140 0.0671	underlayer (lbs) 0.5171 0.2160	Overflow (lbs) 0.0425 0.2341	Start storage (Ibs) 0.0000 0.0000	End storage (Ibs) 0.0000 0.0000	Outflow from BMP (lbs) 0.2766	Load removed (lbs) 0.2970	(based on BMP inflow)	(based on total inflow
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	2.6693 Inflow to BMP (lbs)	1.1329 Inflow to component (lbs) 0.5736	0.3521 0.5840 Decay (lbs) 0.0140	underlayer (lbs) 0.5171	Overflow (lbs) 0.0425	Start storage (Ibs) 0.0000	End storage (lbs) 0.0000	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	
Bioretention S Total ORTHOP BMP Bioretention N	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	2.6693 Inflow to BMP (lbs) 0.5736	1.1329 Inflow to component (lbs) 0.5736 0.5171	0.3521 0.5840 Decay (lbs) 0.0140 0.0671	underlayer (lbs) 0.5171 0.2160	Overflow (lbs) 0.0425 0.2341	Start storage (Ibs) 0.0000 0.0000	End storage (Ibs) 0.0000 0.0000	Outflow from BMP (lbs) 0.2766	Load removed (lbs) 0.2970	(based on BMP inflow) 51.8%	(based on total inflow 27.5%

Table J-4 2007 Flows and Loads of Subbasin 330 BMP Performance Evaluation Modeling

FLOW			T	1			1		T		1	1
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflow
Bioretention N	Pond + Media	0.5286	0.5286	0.0013	0.5219	0.0054	0.0000	0.0000	0.2854	0.2432	46.0%	24.4%
	Underdrain		0.5219	0.0182	0.2237	0.2800	0.0000	0.0000				
Bioretention S	Pond + Media	0.4669	0.4669	0.0012	0.4625	0.0033	0.0000	0.0000	0.3620	0.1079	23.0%	10.8%
	Underdrain		0.4625	0.1067		0.3587	0.0030	0.0000				
Total		0.9956		0.1274			0.0030	0.0000	0.6475	0.3511		35.2%
								•			•	
	total rainfall (in)	14.221										
d	frainage area (ac)	2.184										
	erall runoff coeff	0.385										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflow
Bioretention N	Pond + Media	383,495	383,495	29,140	351,570	2,785	0	0	109,518	273,976	71.4%	41.2%
Diorecention	Underdrain	505,455	351,570	133,767	111,069	106,734	0	0	105,510	2/3,5/0	71.470	41.270
Bioretention S	Pond + Media	281,492	281,492	21,792		1,394	0	0	118,938	162,555	57.7%	24.4%
BIOTELETICIOTIS	Underdrain	201,492	258,306	140,763	258,306	1,394	0	0	110,950	102,555	57.7%	24.470
-	Undertaini	664.007	238,300			117,544			000.455	100 501		65.69/
Total	1	664,987		325,463			0	0	228,456	436,531	I	65.6%
0000												
ORGN	1 -						-				L.:	- 1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	1.5760	1.5760	0.0194	1.5472	0.0094	0.0000	0.0000	0.5363	1.0397	66.0%	35.0%
	Underdrain		1.5472	0.1723	0.8480	0.5269	0.0000	0.0000				
Bioretention S	Pond + Media	1.3920	1.3920	0.0175	1.3689	0.0056	0.0000	0.0000	0.8123	0.5805	41.7%	19.6%
	Underdrain		1.3689	0.5630		0.8067	0.0008	0.0000				
Total		2.9680		0.7723			0.0008	0.0000	1.3486	1.6203		54.6%
			•						•			
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
5.00	components	to BMP	component	Deccuy	underlayer	01011011	storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	0.6347	0.6347	0.0436	0.5872	0.0039	0.0000	0.0000	0.2198	0.4149	65.4%	34.7%
BIOTELETICIOTTIN		0.0347		0.1962					0.2198	0.4149	05.4%	54.770
Discotontion C	Underdrain	0.5000	0.5872		0.1750 0.5191	0.2159 0.0023	0.0000	0.0000	0.2731	0.2875	F1 20/	24.1%
Bioretention S	Pond + Media	0.5606	0.5606	0.0391	0.5191		0.0000	0.0000	0.2731	0.2875	51.3%	24.1%
	Underdrain		0.5191	0.2483		0.2708	0.0000	0.0000				
Total		1.1953		0.5273			0.0000	0.0000	0.4929	0.7024		58.8%
NO3N											1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	1.1110	1.1110	0.0561	1.0471	0.0079	0.0000	0.0000	0.3771	0.7339	66.1%	35.1%
	Underdrain		1.0471	0.2888	0.3891	0.3692	0.0000	0.0000				
Bioretention S	Pond + Media	0.9813	0.9813	0.0505	0.9261	0.0047	0.0000	0.0000	0.4886	0.4927	50.2%	23.5%
	Underdrain		0.9261	0.4423		0.4838	0.0000	0.0000				
		2.0923		0.8376			0.0000	0.0000	0.8656	1.2267		58.6%
Total		2.0923							•		•	
Total		2.0323	•									
		2.0923										
ORGP	Components		Inflow to		Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
Total ORGP BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow from BMP	Load	% removed (based on	
ORGP	Components	Inflow to BMP	component	Decay	underlayer		storage	storage	from BMP	removed	(based on	(based on
ORGP BMP		Inflow to BMP (lbs)	component (lbs)	Decay (lbs)	underlayer (lbs)	(lbs)	storage (Ibs)	storage (Ibs)	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow
ORGP	Pond + Media	Inflow to BMP	component (lbs) 0.4925	Decay (lbs) 0.0074	underlayer (lbs) 0.4821	(lbs) 0.0030	storage (Ibs) 0.0000	storage (Ibs) 0.0000	from BMP	removed	(based on	(based on
ORGP BMP Bioretention N	Pond + Media Underdrain	Inflow to BMP (Ibs) 0.4925	component (lbs) 0.4925 0.4821	Decay (lbs) 0.0074 0.0609	underlayer (lbs) 0.4821 0.2523	(lbs) 0.0030 0.1689	storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.1719	removed (lbs) 0.3206	(based on BMP inflow) 65.1%	(based on total inflow 34.6%
ORGP BMP	Pond + Media Underdrain Pond + Media	Inflow to BMP (lbs)	component (lbs) 0.4925 0.4821 0.4350	Decay (lbs) 0.0074 0.0609 0.0067	underlayer (lbs) 0.4821	(lbs) 0.0030 0.1689 0.0018	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow
ORGP BMP Bioretention N Bioretention S	Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350	component (lbs) 0.4925 0.4821	Decay (lbs) 0.0074 0.0609 0.0067 0.1785	underlayer (lbs) 0.4821 0.2523	(lbs) 0.0030 0.1689	storage (lbs) 0.0000 0.0000 0.0000 0.0001	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500	removed (lbs) 0.3206 0.1852	(based on BMP inflow) 65.1%	(based on total inflow 34.6% 20.0%
ORGP BMP Bioretention N Bioretention S	Pond + Media Underdrain Pond + Media	Inflow to BMP (Ibs) 0.4925	component (lbs) 0.4925 0.4821 0.4350	Decay (lbs) 0.0074 0.0609 0.0067	underlayer (lbs) 0.4821 0.2523	(lbs) 0.0030 0.1689 0.0018	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719	removed (lbs) 0.3206	(based on BMP inflow) 65.1%	(based on total inflow 34.6%
ORGP BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	Inflow to BMP (lbs) 0.4925 0.4350	component (lbs) 0.4925 0.4821 0.4350	Decay (lbs) 0.0074 0.0609 0.0067 0.1785	underlayer (lbs) 0.4821 0.2523	(lbs) 0.0030 0.1689 0.0018	storage (lbs) 0.0000 0.0000 0.0000 0.0001	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500	removed (lbs) 0.3206 0.1852	(based on BMP inflow) 65.1%	(based on total inflow 34.6% 20.0%
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350 0.9276	component (lbs) 0.4925 0.4821 0.4350 0.4265	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535	underlayer (lbs) 0.4821 0.2523 0.4265	(lbs) 0.0030 0.1689 0.0018 0.2482	storage (lbs) 0.0000 0.0000 0.0000 0.0001 0.0001	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500 0.4219	removed (lbs) 0.3206 0.1852 0.5058	(based on BMP inflow) 65.1% 42.6%	(based on total inflow 34.6% 20.0% 54.5%
ORGP BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	Inflow to BMP (lbs) 0.4925 0.4350	component (lbs) 0.4925 0.4821 0.4350	Decay (lbs) 0.0074 0.0609 0.0067 0.1785	underlayer (lbs) 0.4821 0.2523	(lbs) 0.0030 0.1689 0.0018	storage (lbs) 0.0000 0.0000 0.0000 0.0001	storage (lbs) 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500	removed (lbs) 0.3206 0.1852	(based on BMP inflow) 65.1% 42.6%	(based on total inflow 34.6% 20.0% 54.5%
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350 0.9276	component (lbs) 0.4925 0.4821 0.4350 0.4265	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535	underlayer (lbs) 0.4821 0.2523 0.4265	(lbs) 0.0030 0.1689 0.0018 0.2482	storage (lbs) 0.0000 0.0000 0.0000 0.0001 0.0001	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500 0.4219	removed (lbs) 0.3206 0.1852 0.5058	(based on BMP inflow) 65.1% 42.6%	(based on total inflow 34.6% 20.0% 54.5%
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350 0.9276 Inflow	component (lbs) 0.4925 0.4821 0.4350 0.4265	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535	underlayer (lbs) 0.4821 0.2523 0.4265 Flow to	(lbs) 0.0030 0.1689 0.0018 0.2482	storage (lbs) 0.0000 0.0000 0.0000 0.0001 0.0001 Start	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End	from BMP (lbs) 0.1719 0.2500 0.4219 Outflow	removed (lbs) 0.3206 0.1852 0.5058 Load	(based on BMP inflow) 65.1% 42.6%	(based on total inflow 34.6% 20.0% 54.5% % removed (based on
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350 0.9276 Inflow to BMP	component (lbs) 0.4925 0.4821 0.4350 0.4265	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535 Decay	underlayer (lbs) 0.4821 0.2523 0.4265 Flow to underlayer	(lbs) 0.0030 0.1689 0.0018 0.2482 Overflow	storage (lbs) 0.0000 0.0000 0.0001 0.0001 0.0001 Start storage	storage (lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 End storage	from BMP (lbs) 0.1719 0.2500 0.4219 Outflow from BMP	removed (lbs) 0.3206 0.1852 0.5058 Load removed	(based on BMP inflow) 65.1% 42.6% % removed (based on	(based on total inflow 34.6% 20.0% 54.5% % removed (based on
ORGP BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain Components	Inflow to BMP (lbs) 0.4925 0.4350 0.9276 Inflow to BMP (lbs)	component (lbs) 0.4925 0.4821 0.4350 0.4265	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535 Decay (lbs)	underlayer (lbs) 0.4821 0.2523 0.4265 Flow to underlayer (lbs)	(lbs) 0.0030 0.1689 0.0018 0.2482 Overflow (lbs)	storage (lbs) 0.0000 0.0000 0.0001 0.0001 Start storage (lbs)	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs)	from BMP (lbs) 0.1719 0.2500 0.4219 Outflow from BMP (lbs)	removed (lbs) 0.3206 0.1852 0.5058 Load removed (lbs)	(based on BMP inflow) 65.1% 42.6% % removed (based on BMP inflow)	(based on total inflow 34.6% 20.0% 54.5% % removed (based on total inflow
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP Bioretention N	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	Inflow to BMP (lbs) 0.4925 0.4350 0.9276 Inflow to BMP (lbs) 0.1950	component (lbs) 0.4925 0.4821 0.4350 0.4265 Inflow to component (lbs) 0.1950 0.1909	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535 Decay (lbs) 0.0029 0.0241	underlayer (lbs) 0.4821 0.2523 0.4265 Flow to underlayer (lbs) 0.1909 0.1005	(lbs) 0.0030 0.1689 0.0018 0.2482 Overflow (lbs) 0.0012 0.0663	storage (lbs) 0.0000 0.0000 0.0001 0.0001 Start storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.1719 0.2500 0.4219 Outflow from BMP (lbs) 0.0675	removed (lbs) 0.3206 0.1852 0.5058 Load removed (lbs) 0.1275	(based on BMP inflow) 65.1% 42.6% % removed (based on BMP inflow) 65.4%	(based on total inflow 34.6% 20.0% 54.5% % removed (based on total inflow 34.7%
ORGP BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	Inflow to BMP (lbs) 0.4925 0.4350 0.9276 Inflow to BMP (lbs)	component (lbs) 0.4925 0.4821 0.4350 0.4265 Inflow to component (lbs) 0.1950	Decay (lbs) 0.0074 0.0609 0.0067 0.1785 0.2535 Decay (lbs) 0.0029	underlayer (lbs) 0.4821 0.2523 0.4265 Flow to underlayer (lbs) 0.1909	(lbs) 0.0030 0.1689 0.0018 0.2482 Overflow (lbs) 0.0012	storage (lbs) 0.0000 0.0000 0.0001 0.0001 Start storage (lbs) 0.0000	storage (lbs) 0.0000 0.0000 0.0000 0.0000 End storage (lbs) 0.0000	from BMP (lbs) 0.1719 0.2500 0.4219 Outflow from BMP (lbs)	removed (lbs) 0.3206 0.1852 0.5058 Load removed (lbs)	(based on BMP inflow) 65.1% 42.6% % removed (based on BMP inflow)	(based on total inflow 34.6% 20.0% 54.5% % removed (based on total inflow

Table J-5 2008 Flows and Loads of Subbasin 330 BMP Performance Evaluation Modeling

FLOW			1				1				1	1
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflow
Bioretention N	Pond + Media	1.5643	1.5643	0.0044	1.2485	0.3114	0.0000	0.0000	1.1015	0.4628	29.6%	15.7%
	Underdrain		1.2485	0.0213	0.4371	0.7901	0.0000	0.0000				
Bioretention S	Pond + Media	1.3815	1.3815	0.0040	1.1055	0.2719	0.0000	0.0000	1.2543	0.1066	7.7%	3.6%
	Underdrain		1.1055	0.1026		0.9823	0.0000	0.0206	1			
Total		2.9458		0.1323			0.0000	0.0206	2.3558	0.5694		19.3%
								•			•	
	total rainfall (in)	31.205										
c	drainage area (ac)	2.184										
ov	erall runoff coeff	0.519										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflow
Bioretention N	Pond + Media	733,403	733,403	91,602	609,834	31,965	0	0	265,856	467,547	63.8%	36.8%
Diorecention	Underdrain	733,405	609,834	215,835	160,108	233,891	0	0	203,030	407,547	03.070	30.070
Bioretention S	Pond + Media	538,124	538,124	67,818	447,690		0	0	268,008	269,138	50.0%	21.2%
bioretention 3	Underdrain	556,124	447,690	201,274	447,090	22,616 245,393	0	978	206,006	209,130	50.0%	21.270
	Underdrain		447,690			245,393						
Total		1,271,527		576,529			0	978	533,864	736,685	I	57.9%
0000												
ORGN	1-						-				L.:	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	2.9220	2.9220	0.0606	2.7774	0.0839	0.0000	0.0000	1.3171	1.6049	54.9%	29.2%
	Underdrain		2.7774	0.2872	1.2571	1.2332	0.0000	0.0000				
Bioretention S	Pond + Media	2.5789	2.5789	0.0541	2.4545	0.0703	0.0000	0.0000	1.6751	0.8520	33.0%	15.5%
	Underdrain		2.4545	0.7975		1.6048	0.0000	0.0518				
Total		5.5009		1.1994			0.0000	0.0518	2.9922	2.4569		44.7%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	1.4455	1.4455	0.1651	1.0638	0.2166	0.0000	0.0000	0.6964	0.7491	51.8%	27.5%
Diorecention	Underdrain	1.4455	1.0638	0.3179	0.2661	0.4798	0.0000	0.0000	0.0504	0.7451	51.070	27.570
Bioretention S	Pond + Media	1.2765	1.2765	0.1473	0.9401	0.1891	0.0000	0.0000	0.7577	0.5161	40.4%	19.0%
biorecention 5	Underdrain	1.2705	0.9401	0.3687	0.5401	0.5687	0.0000	0.0026	0.7577	0.5101	40.476	13.078
Tatal	Underdrain	2 7220	0.9401			0.3087			4 45 44	4 2652		46 50/
Total		2.7220		0.9990			0.0000	0.0026	1.4541	1.2652		46.5%
NO3N				-	-1							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention N	Pond + Media	2.3421	2.3421	0.1916	1.9049	0.2457	0.0000	0.0000	1.1021	1.2400	52.9%	28.1%
	Underdrain		1.9049	0.4761	0.5724	0.8564	0.0000	0.0000				
Bioretention S	Pond + Media	2.0685	2.0685	0.1711	1.6840	0.2134	0.0000	0.0000	1.2517	0.8072	39.0%	18.3%
	Underdrain		1.6840	0.6358		1.0384	0.0000	0.0095				
Total		4.4106		1.4746			0.0000	0.0095	2.3539	2.0472		46.4%
ORGP												
DAAD	Componente	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
BMP	Components		1		underlayer		storage	storage	from BMP	removed	(based on	
BIVIP	components		component									total inflow
BIMP	components	to BMP	component (lbs)	(Ibs)		(lbs)		(lbs)	(lbs)	(IDS)		
		to BMP (lbs)	(lbs)	(lbs) 0.0223	(lbs)	(lbs) 0.0266	(lbs)	(lbs) 0.0000	(lbs) 0.4141	(lbs) 0.5105	,	29.3%
BMP Bioretention N	Pond + Media	to BMP	(lbs) 0.9245	0.0223	(lbs) 0.8756	0.0266	(lbs) 0.0000	0.0000	(lbs) 0.4141	0.5105	55.2%	29.3%
Bioretention N	Pond + Media Underdrain	to BMP (lbs) 0.9245	(lbs) 0.9245 0.8756	0.0223 0.1032	(lbs) 0.8756 0.3850	0.0266 0.3875	(lbs) 0.0000 0.0000	0.0000	0.4141	0.5105	55.2%	
	Pond + Media Underdrain Pond + Media	to BMP (lbs)	(lbs) 0.9245 0.8756 0.8161	0.0223 0.1032 0.0199	(lbs) 0.8756	0.0266 0.3875 0.0224	(lbs) 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000			,	29.3% 16.1%
Bioretention N Bioretention S	Pond + Media Underdrain	to BMP (lbs) 0.9245 0.8161	(lbs) 0.9245 0.8756	0.0223 0.1032 0.0199 0.2596	(lbs) 0.8756 0.3850	0.0266 0.3875	(lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0141	0.4141	0.5105	55.2%	16.1%
Bioretention N Bioretention S	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9245	(lbs) 0.9245 0.8756 0.8161	0.0223 0.1032 0.0199	(lbs) 0.8756 0.3850	0.0266 0.3875 0.0224	(lbs) 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.4141	0.5105	55.2%	
Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9245 0.8161	(lbs) 0.9245 0.8756 0.8161	0.0223 0.1032 0.0199 0.2596	(lbs) 0.8756 0.3850	0.0266 0.3875 0.0224	(lbs) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0141	0.4141	0.5105	55.2%	16.1%
Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9245 0.8161 1.7406	(lbs) 0.9245 0.8756 0.8161 0.7738	0.0223 0.1032 0.0199 0.2596 0.4050	(lbs) 0.8756 0.3850 0.7738	0.0266 0.3875 0.0224 0.4999	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0141 0.0141	0.4141 0.5223 0.9364	0.5105	55.2% 34.3%	16.1% 45.4%
Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9245 0.8161 1.7406	(lbs) 0.9245 0.8756 0.8161 0.7738	0.0223 0.1032 0.0199 0.2596	(lbs) 0.8756 0.3850 0.7738 Flow to	0.0266 0.3875 0.0224	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start	0.0000 0.0000 0.0141 0.0141 End	0.4141 0.5223 0.9364 Outflow	0.5105 0.2797 0.7902 Load	55.2% 34.3% % removed	16.1% 45.4% % removed
Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP	(lbs) 0.9245 0.8756 0.8161 0.7738	0.0223 0.1032 0.0199 0.2596 0.4050 Decay	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer	0.0266 0.3875 0.0224 0.4999 Overflow	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage	0.0000 0.0000 0.0141 0.0141 End storage	0.4141 0.5223 0.9364 Outflow from BMP	0.5105 0.2797 0.7902 Load removed	55.2% 34.3% % removed (based on	16.1% 45.4% % removed (based on
Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP (lbs)	(lbs) 0.9245 0.8756 0.8161 0.7738	0.0223 0.1032 0.0199 0.2596 0.4050 Decay (lbs)	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer (lbs)	0.0266 0.3875 0.0224 0.4999 Overflow (lbs)	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0000 0.0000 0.0141 0.0141 End storage (lbs)	0.4141 0.5223 0.9364 Outflow from BMP (lbs)	0.5105 0.2797 0.7902 Load removed (lbs)	55.2% 34.3% % removed (based on BMP inflow)	16.1% 45.4% % removed (based on total inflow
Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP	(lbs) 0.9245 0.8756 0.8161 0.7738 0.7738 Inflow to component (lbs) 0.3666	0.0223 0.1032 0.0199 0.2596 0.4050 Decay (lbs) 0.0089	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer (lbs) 0.3466	0.0266 0.3875 0.0224 0.4999 Overflow (lbs) 0.0112	(lbs) 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0000 0.0141 0.0141 End storage (lbs) 0.0000	0.4141 0.5223 0.9364 Outflow from BMP	0.5105 0.2797 0.7902 Load removed	55.2% 34.3% % removed (based on	16.1% 45.4% % removed (based on
Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain Components	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP (lbs)	(lbs) 0.9245 0.8756 0.8161 0.7738	0.0223 0.1032 0.0199 0.2596 0.4050 Decay (lbs)	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer (lbs)	0.0266 0.3875 0.0224 0.4999 Overflow (lbs)	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs)	0.0000 0.0000 0.0000 0.0141 0.0141 End storage (lbs)	0.4141 0.5223 0.9364 Outflow from BMP (lbs)	0.5105 0.2797 0.7902 Load removed (lbs)	55.2% 34.3% % removed (based on BMP inflow)	16.1% 45.4% % removed (based on total inflow
Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP (lbs)	(lbs) 0.9245 0.8756 0.8161 0.7738 0.7738 Inflow to component (lbs) 0.3666	0.0223 0.1032 0.0199 0.2596 0.4050 Decay (lbs) 0.0089	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer (lbs) 0.3466	0.0266 0.3875 0.0224 0.4999 Overflow (lbs) 0.0112	(lbs) 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000	0.0000 0.0000 0.0141 0.0141 End storage (lbs) 0.0000	0.4141 0.5223 0.9364 Outflow from BMP (lbs)	0.5105 0.2797 0.7902 Load removed (lbs)	55.2% 34.3% % removed (based on BMP inflow)	16.1% 45.4% % removed (based on total inflow
Bioretention N Bioretention S Total ORTHOP BMP Bioretention N	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	to BMP (lbs) 0.9245 0.8161 1.7406 Inflow to BMP (lbs) 0.3666	(lbs) 0.9245 0.8756 0.8161 0.7738 Inflow to component (lbs) 0.3666 0.3466	0.0223 0.1032 0.0199 0.2596 0.4050 Decay (lbs) 0.0089 0.0408	(lbs) 0.8756 0.3850 0.7738 Flow to underlayer (lbs) 0.3466 0.1525	0.0266 0.3875 0.0224 0.4999 Overflow (lbs) 0.0112 0.1533	(lbs) 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0000 0.0000 0.0141 0.0141 End storage (lbs) 0.0000 0.0000	0.4141 0.5223 0.9364 Outflow from BMP (lbs) 0.1645	0.5105 0.2797 0.7902 Load removed (lbs) 0.2022	55.2% 34.3% % removed (based on BMP inflow) 55.1%	16.1% 45.4% % removed (based on total inflow 29.3%

Table J-6 2009 Flows and Loads of Subbasin 330 BMP Performance Evaluation Modeling

FLOW								1			-	
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflow
Bioretention N	Pond + Media	2.0985	2.0985	0.0070	1.6031	0.4884	0.0000	0.0000	1.5849	0.5135	24.5%	12.9%
	Underdrain		1.6031	0.0274	0.4791	1.0965	0.0000	0.0000				
Bioretention S	Pond + Media	1.8532	1.8532	0.0064	1.4228	0.4240	0.0000	0.0000	1.7187	0.1487	7.9%	3.7%
	Underdrain		1.4228	0.1423		1.2947	0.0206	0.0064	1			
Total		3.9517		0.1831			0.0206	0.0064	3.3037	0.6622		16.7%
	•										•	
	total rainfall (in)	37.961										
d	lrainage area (ac)	2.184										
	erall runoff coeff	0.572										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflow
Bioretention N	Pond + Media	840,421	840,421	142,637	592,292	105,490	0	0	356,979	483,443	57.5%	33.2%
Diorecention	Underdrain	010,121	592,292	194,759	146,039	251,489	0	0	556,575	100,110	57.570	551270
Bioretention S	Pond + Media	616,657	616,657	106,539	435,539	74,580	0	0	328,874	288,303	46.7%	19.8%
Diorecention 5	Underdrain	010,057	435,539	181,788	433,333	254,294	978	458	520,074	200,303	40.776	13.876
Tatal	Underdrain	4 45 7 0 70	455,555			234,294			605.052	774 745		52.00/
Total		1,457,079		625,723			978	458	685,853	771,745		52.9%
0000												
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	3.1451	3.1451	0.1013	2.7015	0.3423	0.0000	0.0000	1.6691	1.4760	46.9%	24.7%
	Underdrain		2.7015	0.2482	1.1264	1.3268	0.0000	0.0000				
Bioretention S	Pond + Media	2.7760	2.7760	0.0912	2.3936	0.2911	0.0000	0.0000	1.9951	0.7849	27.8%	13.1%
	Underdrain		2.3936	0.6936		1.7040	0.0518	0.0478				
Total		5.9211		1.1343			0.0518	0.0478	3.6642	2.2609		37.9%
	•											
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	1.7079	1.7079	0.2613	1.0903	0.3563	0.0000	0.0000	0.8929	0.8150	47.7%	25.3%
Diorecention N	Underdrain	1.7075	1.0903	0.3069	0.2468	0.5366	0.0000	0.0000	0.0525	0.8150	47.770	23.370
Bioretention S	Pond + Media	1.5082	1.5082	0.2354	0.2408	0.3300	0.0000	0.0000	0.9234	0.5861	38.8%	18.2%
bioretention 3	Underdrain	1.5062	0.9653	0.2334	0.9035		0.0000	0.0014	0.9234	0.5601	50.070	10.270
	Underdrain		0.9653			0.6159						
Total		3.2161		1.1544			0.0026	0.0014	1.8162	1.4012		43.5%
NO3N	-			-	-1							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	2.6639	2.6639	0.3047	1.9147	0.4445	0.0000	0.0000	1.3941	1.2698	47.7%	25.3%
	Underdrain		1.9147	0.4405	0.5246	0.9496	0.0000	0.0000				
Bioretention S	Pond + Media	2.3526	2.3526	0.2743	1.6955	0.3829	0.0000	0.0000	1.4907	0.8651	36.6%	17.2%
	Underdrain		1.6955	0.5908		1.1079	0.0095	0.0064				
Total		5.0165		1.6104			0.0095	0.0064	2.8848	2.1349		42.5%
ORGP												
ORGP BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
	Components			Decay		Overflow						
	Components	to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
BMP		to BMP (lbs)	component (lbs)	(lbs)	underlayer (lbs)	(lbs)	storage (Ibs)	storage (Ibs)	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow)
	Pond + Media	to BMP	component (lbs) 0.9938	(lbs) 0.0360	underlayer (lbs) 0.8527	(lbs) 0.1050	storage (Ibs) 0.0000	storage (Ibs) 0.0000	from BMP	removed	(based on	(based on
BMP Bioretention N	Pond + Media Underdrain	to BMP (lbs) 0.9938	component (lbs) 0.9938 0.8527	(lbs) 0.0360 0.0911	underlayer (lbs) 0.8527 0.3509	(lbs) 0.1050 0.4107	storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.5157	removed (lbs) 0.4781	(based on BMP inflow) 48.1%	(based on total inflow) 25.4%
BMP	Pond + Media Underdrain Pond + Media	to BMP (lbs)	component (lbs) 0.9938 0.8527 0.8771	(lbs) 0.0360 0.0911 0.0324	underlayer (lbs) 0.8527	(lbs) 0.1050 0.4107 0.0894	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based on total inflow)
BMP Bioretention N Bioretention S	Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771	component (lbs) 0.9938 0.8527	(lbs) 0.0360 0.0911 0.0324 0.2293	underlayer (lbs) 0.8527 0.3509	(lbs) 0.1050 0.4107	storage (lbs) 0.0000 0.0000 0.0000 0.0141	storage (lbs) 0.0000 0.0000 0.0000 0.0127	from BMP (lbs) 0.5157 0.6168	removed (lbs) 0.4781 0.2617	(based on BMP inflow) 48.1%	(based on total inflow) 25.4% 13.9%
BMP Bioretention N	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9938	component (lbs) 0.9938 0.8527 0.8771	(lbs) 0.0360 0.0911 0.0324	underlayer (lbs) 0.8527 0.3509	(lbs) 0.1050 0.4107 0.0894	storage (lbs) 0.0000 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0000	from BMP (lbs) 0.5157	removed (lbs) 0.4781	(based on BMP inflow) 48.1%	(based on total inflow) 25.4%
BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9938 0.8771	component (lbs) 0.9938 0.8527 0.8771	(lbs) 0.0360 0.0911 0.0324 0.2293	underlayer (lbs) 0.8527 0.3509	(lbs) 0.1050 0.4107 0.0894	storage (lbs) 0.0000 0.0000 0.0000 0.0141	storage (lbs) 0.0000 0.0000 0.0000 0.0127	from BMP (lbs) 0.5157 0.6168	removed (lbs) 0.4781 0.2617	(based on BMP inflow) 48.1%	(based on total inflow) 25.4% 13.9%
BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709	component (lbs) 0.9938 0.8527 0.8771 0.7553	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889	underlayer (lbs) 0.8527 0.3509 0.7553	(lbs) 0.1050 0.4107 0.0894 0.5274	storage (lbs) 0.0000 0.0000 0.0000 0.0141 0.0141	storage (lbs) 0.0000 0.0000 0.0000 0.0127 0.0127	from BMP (lbs) 0.5157 0.6168 1.1325	removed (lbs) 0.4781 0.2617 0.7398	(based on BMP inflow) 48.1% 29.4%	(based on total inflow) 25.4% 13.9% 39.2%
BMP Bioretention N Bioretention S Total	Pond + Media Underdrain Pond + Media	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow	component (lbs) 0.9938 0.8527 0.8771 0.7553	(lbs) 0.0360 0.0911 0.0324 0.2293	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to	(lbs) 0.1050 0.4107 0.0894	storage (lbs) 0.0000 0.0000 0.0000 0.0141 0.0141 Start	storage (lbs) 0.0000 0.0000 0.0000 0.0127 0.0127 End	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow	removed (lbs) 0.4781 0.2617 0.7398 Load	(based on BMP inflow) 48.1% 29.4%	(based on total inflow 25.4% 13.9% 39.2% % removed
BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709	component (lbs) 0.9938 0.8527 0.8771 0.7553 Inflow to component	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889	underlayer (lbs) 0.8527 0.3509 0.7553	(lbs) 0.1050 0.4107 0.0894 0.5274	storage (lbs) 0.0000 0.0000 0.0000 0.0141 0.0141	storage (lbs) 0.0000 0.0000 0.0000 0.0127 0.0127	from BMP (lbs) 0.5157 0.6168 1.1325	removed (lbs) 0.4781 0.2617 0.7398	(based on BMP inflow) 48.1% 29.4% % removed (based on	(based on total inflow 25.4% 13.9% 39.2% % removed (based on
BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow	component (lbs) 0.9938 0.8527 0.8771 0.7553	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to	(lbs) 0.1050 0.4107 0.0894 0.5274	storage (lbs) 0.0000 0.0000 0.0000 0.0141 0.0141 Start	storage (lbs) 0.0000 0.0000 0.0000 0.0127 0.0127 End	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow	removed (lbs) 0.4781 0.2617 0.7398 Load	(based on BMP inflow) 48.1% 29.4% % removed (based on	(based on total inflow 25.4% 13.9% 39.2% % removed (based on
BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow to BMP	component (lbs) 0.9938 0.8527 0.8771 0.7553 Inflow to component	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889 Decay	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to underlayer	(lbs) 0.1050 0.4107 0.0894 0.5274 Overflow	storage (lbs) 0.0000 0.0000 0.0141 0.0141 Start storage	storage (lbs) 0.0000 0.0000 0.0127 0.0127 End storage	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow from BMP	removed (lbs) 0.4781 0.2617 0.7398 Load removed	(based on BMP inflow) 48.1% 29.4% % removed (based on	(based on total inflow 25.4% 13.9% 39.2% % removed (based on
BMP Bioretention N Bioretention S Total ORTHOP BMP	Pond + Media Underdrain Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow to BMP (lbs)	component (lbs) 0.9938 0.8527 0.8527 0.8771 0.7553	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889 Decay (lbs)	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to underlayer (lbs)	(lbs) 0.1050 0.4107 0.0894 0.5274 Overflow (lbs)	storage (lbs) 0.0000 0.0000 0.0141 0.0141 Start storage (lbs)	storage (lbs) 0.0000 0.0000 0.0000 0.0127 0.0127 End storage (lbs)	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow from BMP (lbs)	removed (lbs) 0.4781 0.2617 0.7398 Load removed (lbs)	(based on BMP inflow) 48.1% 29.4% % removed (based on BMP inflow)	(based on total inflow) 25.4% 13.9% 39.2% % removed (based on total inflow)
BMP Bioretention N Bioretention S Total ORTHOP	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow to BMP (lbs)	component (lbs) 0.9938 0.8527 0.8771 0.7553 Inflow to component (lbs) 0.3941	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889 Decay (lbs) 0.0144	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to underlayer (lbs) 0.3374	(lbs) 0.1050 0.4107 0.0894 0.5274 Overflow (lbs) 0.0423	storage (lbs) 0.0000 0.0000 0.0141 0.0141 Start storage (lbs) 0.0000	storage (lbs) 0.0000 0.0000 0.0127 0.0127 End storage (lbs) 0.0000	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow from BMP (lbs)	removed (lbs) 0.4781 0.2617 0.7398 Load removed (lbs)	(based on BMP inflow) 48.1% 29.4% % removed (based on BMP inflow)	(based on total inflow) 25.4% 13.9% 39.2% % removed (based on total inflow)
BMP Bioretention N Bioretention S Total ORTHOP BMP Bioretention N	Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	to BMP (lbs) 0.9938 0.8771 1.8709 Inflow to BMP (lbs) 0.3941	component (lbs) 0.9938 0.8527 0.8771 0.7553 Inflow to component (lbs) 0.3941 0.3374	(lbs) 0.0360 0.0911 0.0324 0.2293 0.3889 Decay (lbs) 0.0144 0.0359	underlayer (lbs) 0.8527 0.3509 0.7553 Flow to underlayer (lbs) 0.3374 0.1386	(lbs) 0.1050 0.4107 0.0894 0.5274 Overflow (lbs) 0.0423 0.1630	storage (lbs) 0.0000 0.0000 0.0141 0.0141 Start storage (lbs) 0.0000 0.0000	storage (lbs) 0.0000 0.0000 0.0127 0.0127 End storage (lbs) 0.0000 0.0000	from BMP (lbs) 0.5157 0.6168 1.1325 Outflow from BMP (lbs) 0.2053	removed (lbs) 0.4781 0.2617 0.7398 Load removed (lbs) 0.1888	(based on BMP inflow) 48.1% 29.4% % removed (based on BMP inflow) 47.9%	(based on total inflow) 25.4% 13.9% 39.2% % removed (based on total inflow) 25.3%

Table J-7 2010 Flows and Loads of Subbasin 330 BMP Performance Evaluation Modeling

FLOW	1											
BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflo
Bioretention N	Pond + Media	6.6945	6.6945	0.0214	5.4214	1.2517	0.0000	0.0000	4.6929	2.0016	29.9%	15.9%
	Underdrain		5.4214	0.1156	1.8646	3.4412	0.0000	0.0000				
Bioretention S	Pond + Media	5.9117	5.9117	0.0195	4.8080	1.0841	0.0000	0.0000	5.3818	0.5234	8.9%	4.2%
	Underdrain		4.8080	0.5040		4.2977	0.0000	0.0064				
Total		12.6061		0.6604			0.0000	0.0064	10.0747	2.5250		20.0%
	1								1			
	total rainfall (in)	131.314										
h	rainage area (ac)	2.184										
	erall runoff coeff	0.527										
000		0.527										
BACT				-	-1							
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflov
Bioretention N	Pond + Media	3,048,619	3,048,619	392,548	2,413,604	242,462	0	0	1,159,602	1,889,017	62.0%	35.7%
	Underdrain		2,413,604	875,752	620,706	917,140	0	0				
Bioretention S	Pond + Media	2,236,636	2,236,636	292,535	1,773,410	170,690	0	0	1,133,102	1,103,076	49.3%	20.9%
	Underdrain		1,773,410	810,518		962,412	0	458	1			
Total		5,285,255		2,371,354		· · ·	0	458	2,292,704	2,992,093	1	56.6%
	1	5,205,255	1	2,37 1,334			5		2,232,704	2,332,033		55.070
ORGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
DIVIE	Components			Decay		Overnow						
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	12.0660	12.0660	0.2747	11.0249	0.7663	0.0000	0.0000	5.6727	6.3933	53.0%	28.1%
	Underdrain		11.0249	1.1631	4.9553	4.9063	0.0000	0.0000				
Bioretention S	Pond + Media	10.6472	10.6472	0.2467	9.7538	0.6467	0.0000	0.0000	7.2450	3.3545	31.5%	14.8%
	Underdrain		9.7538	3.1074		6.5983	0.0000	0.0478				
Total		22.7132		4.7919			0.0000	0.0478	12.9177	9.7477		42.9%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
Divil	components	to BMP	component	Decay	underlayer	overnow	storage	storage	from BMP	removed	(based on	(based on
				(11)		(11)						
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	6.0617	6.0617	0.7206	4.4392	0.9019	0.0000	0.0000	2.8925	3.1693	52.3%	27.8%
	Underdrain		4.4392	1.3820	1.0666	1.9905	0.0000	0.0000				
Bioretention S	Pond + Media	5.3521	5.3521	0.6471	3.9267	0.7783	0.0000	0.0000	3.1418	2.2090	41.3%	19.4%
	Underdrain		3.9267	1.5618		2.3635	0.0000	0.0014				
Total		11.4139		4.3116			0.0000	0.0014	6.0342	5.3783		47.1%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
2.00	componento	to BMP	component	Deccuy	underlayer	01011011		storage	from BMP	removed	(based on	(based on
				(164)		(lbs)	storage	-				
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention N	Pond + Media	9.7031	9.7031	0.8482	7.7061	1.1488	0.0000	0.0000	4.6074	5.0957	52.5%	27.9%
	Underdrain		7.7061	1.9876	2.2599	3.4586	0.0000	0.0000				
Bioretention S	Pond + Media	8.5689	8.5689	0.7621	6.8195	0.9873	0.0000	0.0000	5.1887	3.3738	39.4%	18.5%
	Underdrain		6.8195	2.6115		4.2014	0.0000	0.0064				
Total		18.2720		6.2094			0.0000	0.0064	9.7961	8.4695		46.4%
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component	,	underlayer		storage	storage	from BMP	removed	(based on	(based on
	1			(lbc)		(lbc)		(lbs)			BMP inflow)	
		(lbs)	(lbs) 3.8292	(lbs) 0.0999	(lbs) 3.4914	(lbs) 0.2380	(lbs) 0.0000	0.0000	(lbs) 1.7802	(lbs) 2.0490		28.4%
Bioretention N	Pond + Modia	2 8202							1.7802	2.0490	53.5%	20.470
Bioretention N	Pond + Media	3.8292			1.5267	1.5422	0.0000	0.0000	+	<u> </u>		
	Underdrain		3.4914	0.4225			0.0000	0.0000	2.2573	1.1092	32.8%	15.4%
	Underdrain Pond + Media	3.8292 3.3792	3.4914 3.3792	0.0896	3.0885	0.2011			Т			
	Underdrain		3.4914			0.2011 2.0562	0.0000	0.0127				
Bioretention S	Underdrain Pond + Media		3.4914 3.3792	0.0896					4.0375	3.1582		43.8%
Bioretention S	Underdrain Pond + Media	3.3792	3.4914 3.3792	0.0896 1.0195			0.0000	0.0127	4.0375	3.1582		43.8%
Bioretention S	Underdrain Pond + Media	3.3792	3.4914 3.3792	0.0896 1.0195			0.0000	0.0127	4.0375	3.1582		43.8%
Bioretention S Total ORTHOP	Underdrain Pond + Media Underdrain	3.3792 7.2084	3.4914 3.3792 3.0885	0.0896 1.0195 1.6314	3.0885		0.0000	0.0127			% removed	
Bioretention S	Underdrain Pond + Media	3.3792 7.2084 Inflow	3.4914 3.3792 3.0885	0.0896 1.0195	3.0885 Flow to	2.0562	0.0000 0.0000 Start	0.0127 0.0127 End	Outflow	Load	% removed	% remove
Bioretention S Total ORTHOP	Underdrain Pond + Media Underdrain	3.3792 7.2084 Inflow to BMP	3.4914 3.3792 3.0885	0.0896 1.0195 1.6314 Decay	3.0885 Flow to underlayer	2.0562 Overflow	0.0000 0.0000 Start storage	0.0127 0.0127 End storage	Outflow from BMP	Load removed	(based on	% removed (based on
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components	3.3792 7.2084 Inflow to BMP (lbs)	3.4914 3.3792 3.0885 Inflow to component (lbs)	0.0896 1.0195 1.6314 Decay (lbs)	3.0885 Flow to underlayer (lbs)	2.0562 Overflow (lbs)	0.0000 0.0000 Start storage (Ibs)	0.0127 0.0127 End storage (lbs)	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	% removed (based on total inflow
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	3.3792 7.2084 Inflow to BMP	3.4914 3.3792 3.0885 Inflow to component (lbs) 1.5294	0.0896 1.0195 1.6314 Decay (lbs) 0.0401	3.0885 Flow to underlayer (lbs) 1.3921	2.0562 Overflow (lbs) 0.0972	0.0000 0.0000 Start storage (Ibs) 0.0000	0.0127 0.0127 End storage (lbs) 0.0000	Outflow from BMP	Load removed	(based on	% removed (based on
Bioretention N	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	3.3792 7.2084 Inflow to BMP (lbs) 1.5294	3.4914 3.3792 3.0885 Inflow to component (lbs) 1.5294 1.3921	0.0896 1.0195 1.6314 Decay (lbs) 0.0401 0.1678	3.0885 Flow to underlayer (lbs) 1.3921 0.6076	2.0562 Overflow (lbs) 0.0972 0.6166	0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0127 0.0127 End storage (lbs) 0.0000 0.0000	Outflow from BMP (lbs) 0.7139	Load removed (lbs) 0.8155	(based on BMP inflow) 53.3%	% removed (based on total inflow 28.3%
Bioretention S Total ORTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	3.3792 7.2084 Inflow to BMP (lbs)	3.4914 3.3792 3.0885 Inflow to component (lbs) 1.5294	0.0896 1.0195 1.6314 Decay (lbs) 0.0401	3.0885 Flow to underlayer (lbs) 1.3921	2.0562 Overflow (lbs) 0.0972	0.0000 0.0000 Start storage (Ibs) 0.0000	0.0127 0.0127 End storage (lbs) 0.0000	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	% removed (based on total inflow
Bioretention S Total ORTHOP BMP Bioretention N	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	3.3792 7.2084 Inflow to BMP (lbs) 1.5294	3.4914 3.3792 3.0885 Inflow to component (lbs) 1.5294 1.3921	0.0896 1.0195 1.6314 Decay (lbs) 0.0401 0.1678	3.0885 Flow to underlayer (lbs) 1.3921 0.6076	2.0562 Overflow (lbs) 0.0972 0.6166	0.0000 0.0000 Start storage (lbs) 0.0000 0.0000	0.0127 0.0127 End storage (lbs) 0.0000 0.0000	Outflow from BMP (lbs) 0.7139	Load removed (lbs) 0.8155	(based on BMP inflow) 53.3%	% removed (based on total inflow 28.3%

Table J-8 2007-2010 Flows and Loads of Subbasin 330 BMP Performance Evaluation Modeling

Table J-9 Summary of Flow and Load Removed of Subbasin 330 BMP Performance Evaluation Modeling

FLOW								C							
BMP		Flow	removed (a	ic-ft)			% removed	(based on E	3MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	0.7820	0.2432	0.4628	0.5135	2.0016	31.2%	46.0%	29.6%	24.5%	29.9%	16.6%	24.4%	15.7%	12.9%	15.9%
Bioretention S	0.1602	0.1079	0.1066	0.1487	0.5234	7.3%	23.0%	7.7%	7.9%	8.9%	3.4%	10.8%	3.6%	3.7%	4.2%
Total	0.9423	0.3511	0.5694	0.6622	2.5250						20.0%	35.2%	19.3%	16.7%	20.0%

BACT															
BMP		Load	l removed (1	.0^6)			% removed	l (based on B	MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	664,051	273,976	467,547	483,443	1,889,017	60.8%	71.4%	63.8%	57.5%	62.0%	35.1%	41.2%	36.8%	33.2%	35.7%
Bioretention S	383,081	162,555	269,138	288,303	1,103,076	47.9%	57.7%	50.0%	46.7%	49.3%	20.3%	24.4%	21.2%	19.8%	20.9%
Total	1,047,132	436,531	736,685	771,745	2,992,093						55.4%	65.6%	57.9%	52.9%	56.6%

ORGN

BMP		Loa	d removed (lbs)			% removed	l (based on E	8MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	2.2726	1.0397	1.6049	1.4760	6.3933	51.4%	66.0%	54.9%	46.9%	53.0%	27.3%	35.0%	29.2%	24.7%	28.1%
Bioretention S	1.1370	0.5805	0.8520	0.7849	3.3545	29.2%	41.7%	33.0%	27.8%	31.5%	13.7%	19.6%	15.5%	13.1%	14.8%
Total	3.4096	1.6203	2.4569	2.2609	9.7477						41.0%	54.6%	44.7%	37.9%	42.9%

NH3N

BMP		Loa	d removed (lbs)			% removed	(based on B	MP inflow)			% removed	(based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	1.1903	0.4149	0.7491	0.8150	3.1693	52.4%	65.4%	51.8%	47.7%	52.3%	27.8%	34.7%	27.5%	25.3%	27.8%
Bioretention S	0.8193	0.2875	0.5161	0.5861	2.2090	40.8%	51.3%	40.4%	38.8%	41.3%	19.1%	24.1%	19.0%	18.2%	19.4%
Total	2.0096	0.7024	1.2652	1.4012	5.3783						46.9%	58.8%	46.5%	43.5%	47.1%

NO3N

BMP		Loa	d removed (lbs)			% removed	(based on E	3MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	1.8519	0.7339	1.2400	1.2698	5.0957	51.6%	66.1%	52.9%	47.7%	52.5%	27.4%	35.1%	28.1%	25.3%	27.9%
Bioretention S	1.2088	0.4927	0.8072	0.8651	3.3738	38.2%	50.2%	39.0%	36.6%	39.4%	17.9%	23.5%	18.3%	17.2%	18.5%
Total	3.0607	1.2267	2.0472	2.1349	8.4695						45.3%	58.6%	46.4%	42.5%	46.4%

ORGP

BMP		Loa	d removed (lbs)			% removed	l (based on E	BMP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	0.7398	0.3206	0.5105	0.4781	2.0490	52.2%	65.1%	55.2%	48.1%	53.5%	27.7%	34.6%	29.3%	25.4%	28.4%
Bioretention S	0.3826	0.1852	0.2797	0.2617	1.1092	30.6%	42.6%	34.3%	29.4%	32.8%	14.3%	20.0%	16.1%	13.9%	15.4%
Total	1.1225	0.5058	0.7902	0.7398	3.1582						42.1%	54.5%	45.4%	39.2%	43.8%

ORTHOP

BMP	Load removed (lbs)				% removed (based on BMP inflow)				% removed (based on total inflow)						
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention N	0.2970	0.1275	0.2022	0.1888	0.8155	51.8%	65.4%	55.1%	47.9%	53.3%	27.5%	34.7%	29.3%	25.3%	28.3%
Bioretention S	0.1538	0.0736	0.1106	0.1035	0.4415	30.5%	42.7%	34.2%	29.3%	32.7%	14.3%	20.0%	16.0%	13.8%	15.3%
Total	0.4508	0.2011	0.3128	0.2923	1.2570						41.8%	54.7%	45.3%	39.1%	43.7%

K. Subbasin 420 BMP Performance Evaluation Modeling

Site Description and Land uses

The site selected by the River Authority for BMP performance evaluation modeling of Subbasin 420 is the area bounded by Alazan Creek, Tampico Street and IH-35 as shown in Exhibit K-1. The San Antonio Housing Authority (SAHA) is going to build a new apartment complex at this location. After discussion between the River Authority and SAHA, SAHA agreed to consider incorporating bioretention on the site. The proposed bioretention areas and their corresponding drainage areas are superimposed on SAHA's site development plan as shown in Exhibit K-2. Bioretention W will receive the runoff from the roof of the adjacent building. Bioretention S will treat the runoff from the parking lot. The parking lot grading may need to be modified slightly so that the runoff will go to the bioretention instead of being collected by the originally proposed storm sewer line as shown in the exhibit. Moreover, it is assumed that the roof drainage of the building next to the parking lot will be connected to storm sewers instead of running on to the parking lot. Based on the size classification in the BMP Tool Database, both were considered "average."

Exhibit K-1 Selected Site for Subbasin 420

The green space in the drainage area was assumed pervious and all other areas were assumed impervious. Parameters for multi-family residential were applied in the model. The pervious (Per.) and impervious (Imp.) areas are shown in Table K-1.

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQVs for the selected BMP sites are: $1.5^{"}/12 \ge 0.6 \ge 0.648 \text{ ac} \ge 1.2 = 0.058 \text{ ac-ft}$ for Bioretention W $1.5^{"}/12 \ge 0.6 \ge 1.130 \text{ ac} \ge 1.2 = 0.102 \text{ ac-ft}$ for Bioretention S

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The water quality volume and surface area of each BMP are shown in Table K-2.

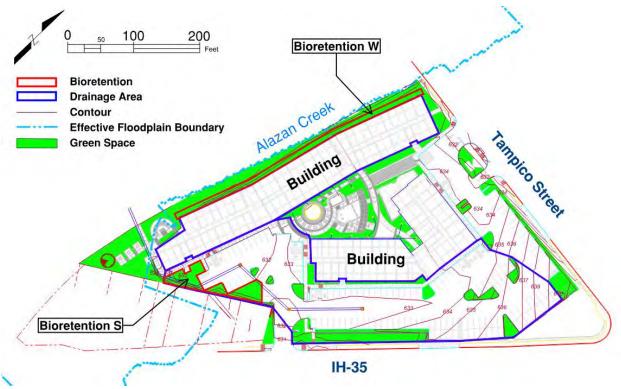


Exhibit K-2 Proposed BMP Layout on Subbasin 420 Site

Table K-1 Pervious and	Impervious Areas	of Subbasin 420 BMP Sites
Tuote It I I el Tious une	impervicus ineus	of Succusin 120 Bill Sites

Land use	IC%	Bioretention W				Bioretention S		
		Per.	Imp.	Total		Per.	Imp.	Total
		Area	Area	Area		Area	Area	Area
		(ac)	(ac)	(ac)		(ac)	(ac)	(ac)
Residential Multi-family	100.0	0.0	0.648	0.648	82.7	0.236	1.130	1.366

Table K-2 Water Qua	ality Volume and Surface Are	ea of Subbasin 420 BMP Site
---------------------	------------------------------	-----------------------------

BMP	WQV (ac-ft)	Surface area (ac)
Bioretention W	0.0836	0.0706
Bioretention S	0.1069	0.0581
Total	0.1905	

	Required	0.1600	
· Surface	area is the area at the water	level of the \overline{WOV}	

Note: Surface area is the area at the water level of the WQV.

Modeling Bioretention in HSPF

Refer to the discussion in Section F, except that the soil media of Bioretention S is 4 ft deep instead of 3 ft so that sufficient WQV can be provided.

Development of HSPF Model Files

The model files were developed similar to those for Subbasin 70 described in Attachment B.

Results

The BMP performance evaluation modeling results are summarized in several tables. Table K-3 lists the inflow and outflow geometric means (Geomean) and flow-weighted Geomean of EC concentrations over the 2007 to 2010 model simulation period for the bioretention. The modeling results listed in the table show that, while the BMPs can remove EC loads from stormwater runoff, the four-year Geomean EC concentrations can still be expected to exceed the Primary Contact Recreation (PCR) Criteria of 126 #/dL, where 1 dL = 100 mL. That is, with the high EC levels in stormwater runoff, the proposed BMPs will not be sufficient to bring the outflow below the PCR Criteria.

The outflow flow-weighted geomeans are higher than the inflow. This may be better explained by following the variation of flow and EC concentration during a storm event as shown in Table K-4. In this case, apparently before the peak flow, the EC load on the land surface has already been almost completely removed and the EC concentration in the peak flow is very low. The effect of the bioretention is delaying the flow somewhat and mixing the high and low concentration water. As a result, the outflow flow-weighted geomean is higher than the inflow flow-weighted geomean even though the load is reduced by the BMP.

	Inf	low	Outflow			
BMP	BMP Geomean (#/dL)		Geomean (#/dL)	Flow-weighted Geomean (#/dL)		
Bioretention W	99,882	9,178	17,862	15,549		
Bioretention S	92,340	14,900	17,050	16,653		
Overall	92,319	14,401	16,588	16,310		

Table K-3 EC Concentrations of Subbasin 420 BMP Layouts Over 20)07-2010
Tuble R 5 Le concentrations of Subbasin 120 Divit Layouts over 20	101 2010

Tables K-5 to K-8 list the model output annual inflows and outflows of the bioretention in Subbasin 420 for 2007, 2008, 2009, and 2010, respectively. Each of these tables include flows, bacteria, and nutrient loads, where BACT, ORGN, NH3N, ORGP, and ORTHOP are bacteria (EC), organic nitrogen, ammonia nitrogen, organic phosphorus, and ortho-phosphate, respectively. The flows and loads removed, and the

corresponding removal percentages (or BMP performance) are also listed. Table K-9 shows the same set of information but for the 4-year total.

The constituent removal percentages were calculated in two approaches – based on individual input to a BMP and based on the total input coming from the total drainage area. The loads removed and removal percentages calculated are summarized in Table K-10 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

Inflow	Influent	Outflow	Effluent	
(cfs)	EC (#/dL)	(cfs)	EC (#/dL)	
0.0000	0	0.0000	0	
0.0000	0	0.0000	0	
0.0584	174,957	0.0000	0	
0.1692	118,774	0.0000	0	
0.0979	73,517	0.0000	0	
0.0615	55,374	0.0327	79,555	
0.0333	46,804	0.0421	76,054	
0.0715	38,999	0.0421	71,140	
0.2836	21,698	0.0421	62,970	
0.5581	5 <i>,</i> 534	0.2178	26,677	
1.6152	311	1.5708	7,656	
1.5100	1	1.5098	3,195	
0.4345	0	0.4652	3,800	
0.1587	0	0.1665	6,396	
0.0721	0	0.0741	10,371	
0.0380	0	0.0426	13,818	
	(cfs) 0.0000 0.0584 0.1692 0.0979 0.0615 0.0333 0.0715 0.2836 0.5581 1.6152 1.5100 0.4345 0.1587 0.0721	(cfs)EC (#/dL)0.000000.000000.0584174,9570.1692118,7740.097973,5170.061555,3740.033346,8040.071538,9990.283621,6980.55815,5341.61523111.510010.434500.158700.07210	(cfs)EC (#/dL)(cfs)0.000000.00000.000000.00000.0584174,9570.00000.1692118,7740.00000.097973,5170.00000.061555,3740.03270.033346,8040.04210.071538,9990.04210.283621,6980.04210.55815,5340.21781.61523111.57081.510011.50980.434500.16650.072100.0741	

Table K-4 Inflow and Outflow EC Concentrations of Bioretention W during Storm Event

Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
components			Evaporation		overnow						(based on
			(ac-ft)		(ac-ft)		-				
Pond + Media							1				2.3%
Pond + Media	3.2348		0.0101	2.2161	1.0085	0.0000	0.0000	3.0828	0.1520	4.7%	3.0%
Underdrain			0.1419				0.0000	1			
	5.0662		0.2695				0.0000	4.7967	0.2695		5.3%
		•					•				
total rainfall (in)	48.295										
ainage area (ac)	2.014										
rall runoff coeff	0.625										
										-	I
Components			Decay		Overflow						% remove
						storage					(based on
	799,159			650,561				390,386	408,773	51.2%	18.4%
	1,416,765			1,023,802				764,778	651,987	46.0%	29.4%
Underdrain		1,023,802			605,141						
	2,215,924		1,060,761			0	0	1,155,164	1,060,760		47.9%
Component	Inflow	Inflormer	Doggi	Flow to	Quartian	Ctout	E4	Outflow	المعط	9/ romans -	0/ roma
components			Decay		Overflow						% removed
			(lbs)		(lbs)						(based on
Pond Modia											total inflow 9.4%
	2.7210			2.5070				2.0155	0.7081	20.0%	9.4%
	4 8111			4 2048				3 7791	1 0320	21.5%	13.7%
	4.0111			4.2040				5.7751	1.0520	21.570	13.770
onderardin	7 5327		ii		0.0220		1	5 7926	1 7401		23.1%
	7.5527		1.7401			0.0000	0.0000	5.7520	1.7401		23.170
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
components			Decay		overnow						(based on
			(lbs)		(lbs)	-	-				
Pond + Media											14.4%
	2.7175			1.6422				1.7629	0.9546	35.1%	22.4%
	4.2528		1.5671			0.0000	0.0000	2.6857	1.5671		36.8%
										1	
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
	to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Pond + Media	2.3959	2.3959	0.2431	1.8558	0.2970	0.0000	0.0000	1.4912	0.9047	37.8%	13.7%
Underdrain		1.8558	0.6616		1.1942	0.0000	0.0000				
Pond + Media	4.2133	4.2133	0.4644	2.8991	0.8497	0.0000	0.0000	2.8212	1.3921	33.0%	21.1%
Underdrain		2.8991	0.9277		1.9714	0.0000	0.0000				<u> </u>
	6.6092		2.2968			0.0000	0.0000	4.3124	2.2968		34.8%
		1			1	1	1	1	I	1	1
Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
	to BMP	component		underlayer		storage	storage	from BMP	removed		
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
	0.8740	0.8740	0.0263	0.8206	0.0271	0.0000	0.0000	0.6272	0.2468	28.2%	10.2%
Pond + Media		0.8206	0.2206		0.6001	0.0000	0.0000				
Underdrain			0.0550	1.3446	0.1438	0.0000	0.0000	1.1797	0.3638	23.6%	15.0%
Underdrain Pond + Media	1.5436	1.5436	0.0552			0.0000	0.0000	1	1	1	
Underdrain		1.5436 1.3446	0.3087		1.0359		1				
Underdrain Pond + Media	1.5436 2.4176				1.0359	0.0000	0.0000	1.8069	0.6107		25.3%
Underdrain Pond + Media			0.3087		1.0359		1	1.8069	0.6107		25.3%
Underdrain Pond + Media Underdrain	2.4176	1.3446	0.3087 0.6107	-		0.0000	0.0000	1	1		1
Underdrain Pond + Media	2.4176 Inflow	1.3446 Inflow to	0.3087	Flow to	1.0359 Overflow	0.0000 Start	0.0000 End	Outflow	Load	% removed	% remove
Underdrain Pond + Media Underdrain	2.4176 Inflow to BMP	1.3446 Inflow to component	0.3087 0.6107 Decay	underlayer	Overflow	0.0000 Start storage	0.0000 End storage	Outflow from BMP	Load removed	(based on	% removed (based on
Underdrain Pond + Media Underdrain Components	2.4176 Inflow to BMP (lbs)	1.3446 Inflow to component (lbs)	0.3087 0.6107 Decay (lbs)	underlayer (lbs)	Overflow (Ibs)	0.0000 Start storage (lbs)	0.0000 End storage (Ibs)	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	% removed (based on total inflow
Underdrain Pond + Media Underdrain Components Pond + Media	2.4176 Inflow to BMP	1.3446 Inflow to component (lbs) 0.3513	0.3087 0.6107 Decay (lbs) 0.0105	underlayer	Overflow (lbs) 0.0106	0.0000 Start storage (Ibs) 0.0000	0.0000 End storage (Ibs) 0.0000	Outflow from BMP	Load removed	(based on	% removed (based on
Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	2.4176 Inflow to BMP (lbs) 0.3513	1.3446 Inflow to component (lbs) 0.3513 0.3302	0.3087 0.6107 Decay (lbs) 0.0105 0.0885	underlayer (lbs) 0.3302	Overflow (lbs) 0.0106 0.2417	0.0000 Start storage (Ibs) 0.0000 0.0000	0.0000 End storage (lbs) 0.0000 0.0000	Outflow from BMP (lbs) 0.2523	Load removed (lbs) 0.0990	(based on BMP inflow) 28.2%	% removed (based on total inflow 10.1%
Underdrain Pond + Media Underdrain Components Pond + Media	2.4176 Inflow to BMP (lbs)	1.3446 Inflow to component (lbs) 0.3513	0.3087 0.6107 Decay (lbs) 0.0105	underlayer (lbs)	Overflow (lbs) 0.0106	0.0000 Start storage (Ibs) 0.0000	0.0000 End storage (Ibs) 0.0000	Outflow from BMP (lbs)	Load removed (lbs)	(based on BMP inflow)	% removed (based on total inflow
	Underdrain otal rainfall (in) iinage area (ac) all runoff coeff Components Pond + Media Underdrain Pond + Media Underdrain Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Pond + Media Underdrain Components Pond + Media Underdrain Components Pond + Media Underdrain Components Pond + Media Underdrain Pond + Medi	to BMP (ac-ft) Pond + Media 1.8314 Underdrain	to BMP (ac-ft) component (ac-ft) Pond + Media 1.8314 1.8314 Underdrain 1.4255 Pond + Media 3.2348 3.2348 Underdrain 2.2161 So.0662	to BMP (ac-ft) component (ac-ft) (ac-ft) (ac-ft) Pond + Media 1.8314 0.0076 Underdrain 1.4255 0.1099 Pond + Media 3.2348 3.2348 0.0101 Underdrain 2.2161 0.1419 5.0662 0.2695 otal rainfall (in) 48.295 sinage area (ac) 2.014 all runoff coeff 0.625 Components Inflow to BMP component (10^6) Decay component (10^6) 10^65) 291,761 Pond + Media 799,159 197,012 Underdrain 1.023,802 418,661 2.215,924 1.060,761 Components Inflow to BMP component (lbs) (lbs) Quaderdrain 2.5670 0.6368 Pond + Media 2.7216 0.712 Underdrain 2.5670 0.6368 Pond + Media 4.8111 0.4111 Pond + Media 1.5533 1.5353 Underdrain 1.6422 0.5778	to BMP (ac-ft) component (ac-ft) underlayer (ac-ft) Pond + Media 1.8314 0.0076 1.4255 Underdrain 1.4255 0.1099 - Pond + Media 3.2348 3.2348 0.0101 2.2161 Underdrain 5.0662 0.2695 - - otal rainfall (in) 48.295 0.2695 - - otal rainfall (in) 48.295 0.2695 - - otal rainfall (in) 48.295 0.2695 - - Components Inflow Inflow to component Decay Flow to underlayer (10^6) (10^6) (10^6) (10^6) - - Pond + Media 1,416,765 1,6422 2,5670	to BMP (ac-ft) component (ac-ft) underlayer (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-ft) (ac-f	to BMP component (ac-ft) underlayer (ac-ft) storage (ac-ft) storage (ac-ft) Pond + Media 1.8314 0.0076 1.4255 0.0993 0.0000 Underdrain 3.2348 3.2348 0.0101 2.2161 0.1419 2.0743 0.0000 Dond + Media 3.2348 0.0101 2.2161 0.1419 2.0743 0.0000 trainfall (in) 48.295 0.2695 0.0000 0.0000 trainfall (in) 48.295 0.2695 0.0000 0.0000 trainfall (in) 48.295 0.0000 0.0000 0.0000 trainfall (in) 48.295 0.0000 0.0000 0.0000 trainfall (in) 48.295 0.010*6 (10*6) (10*6) 0.0000 Underdrain 0.625 0.025 0.0000 0 0 0 Components Inflow to 0000 291,761 58.800 0 0 Underdrain 1.023,802 418.661 605,141 0 0 Comp	to BMP component (ac-ft) underlayer (ac-ft) storage (ac-ft) storage (ac-ft	to BMP component underlayer storage storage storage from BMP Pnd + Media 1.8314 1.8314 0.076 1.4255 0.3983 0.0000 0.0000 1.7133 Ond - Media 3.2348 0.2012 2.2161 1.0055 0.0000 0.0000 3.8283 Underdrain 5.0662 0.1012 2.2161 1.0055 0.0000 0.0000 3.8283 Underdrain 5.0662 0.2695 0.0000 0.0000 3.0000 0.0000 4.7967 otal rainfall (m) 48.295	to BMP component (ac-th) underlayer (ac-th) storage (ac-th) storage (ac-th	Ib BMP Component (ac-ft) underlayer (ac-ft) storage (ac-ft) form BMP removed (ac-ft) (ac-ft) Pond - Media 1.8314 1.8314 1.8315 0.0000 0.0000 1.739 0.1175 6.4% Pond - Media 3.2348 3.2348 0.0101 2.2161 1.0085 0.0000 0.0000 3.0228 0.1520 4.7% Underdrain 5.0662 0.2295 0.0000 0.0000 0.0000 4.7957 0.2695 Components Inflow to 0.625 0.2695 0.0000 0.0000 4.7957 0.2695 Components Inflow to 0.625 0.625 0.0000 0.0000 1.0069 (InFlow removed) % removed foxed on 0.625 % removed foxed on 0.625 % removed foxed on 0.625 % removed foxed on 0.626 % removed foxed on 0.625 % removed foxed on 0.625 % removed foxed on 0.625 % removed foxed on 0.626 % removed foxed on 0.6651 % removed foxed on 0.6651 % removed foxed on 0.6651

Table K-5 2007 Flows and Loads of Subbasin 420 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
ioretention W	Pond + Media	0.2349	0.2349	0.0011	0.2339	0.0000	0.0000	0.0000	0.1538	0.0812	34.6%	12.6%
	Underdrain	0.4005	0.2339	0.0801	0.4075	0.1538	0.0000	0.0000	0.0017	0.4070	25.201	10 70/
Bioretention S	Pond + Media	0.4095	0.4095	0.0020	0.4075	0.0000	0.0000	0.0000	0.3017	0.1078	26.3%	16.7%
- + - I	Underdrain	0.6444	0.4075	0.1058		0.3017	0.0000	0.0000	0.4555	0.4000		20.20/
Fotal		0.6444		0.1889			0.0000	0.0000	0.4555	0.1889		29.3%
	total rainfall (in)	10.971										
	ainage area (ac)	2.014										
	rall runoff coeff	0.350										
0.00		0.550										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
Bioretention W	Pond + Media	251,835	251,835	14,921	236,914	0	0	0	91,859	159,976	63.5%	23.2%
	Underdrain		236,914	145,055		91,859	0	0				
Bioretention S	Pond + Media	438,945	438,945	44,951	393,994	0	0	0	191,571	247,375	56.4%	35.8%
	Underdrain		393,994	202,424		191,571	0	0				
Fotal		690,780		407,352			0	0	283,430	407,351		59.0%
DRGN			•								-	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioretention W	Pond + Media	0.8922	0.8922	0.0083	0.8839	0.0000	0.0000	0.0000	0.4349	0.4573	51.3%	18.7%
	Underdrain		0.8839	0.4490		0.4349	0.0000	0.0000				
Bioretention S	Pond + Media	1.5551	1.5551	0.0268	1.5283	0.0000	0.0000	0.0000	0.9021	0.6530	42.0%	26.7%
	Underdrain		1.5283	0.6261		0.9021	0.0000	0.0000				
Total		2.4473		1.1102			0.0000	0.0000	1.3370	1.1102		45.4%
NH3N	1 1										1	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component	<i></i> ,	underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioretention W	Pond + Media	0.2932	0.2932	0.0141	0.2792	0.0000	0.0000	0.0000	0.1201	0.1731	59.0%	21.5%
Dia anti- a C	Underdrain	0.5444	0.2792	0.1591	0.4677	0.1201	0.0000	0.0000	0.2440	0.0000	52.49/	22.40/
Bioretention S	Pond + Media Underdrain	0.5111	0.5111	0.0434	0.4677	0.0000	0.0000	0.0000	0.2449	0.2662	52.1%	33.1%
T-+-!	Underdrain	0.0044	0.4677	0.2228		0.2449			0.2054	0.4202		EA (0/
Total		0.8044		0.4393		1	0.0000	0.0000	0.3651	0.4393	1	54.6%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIF	components	to BMP	component	Decay	underlayer	Overnow	storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention W	Pond + Media	0.5901	0.5901	0.0215	0.5686	0.0000	0.0000	0.0000	0.2481	0.3420	58.0%	21.1%
	Underdrain		0.5686	0.3205		0.2481	0.0000	0.0000				
Bioretention S	Pond + Media	1.0286	1.0286	0.0662	0.9624	0.0000	0.0000	0.0000	0.5172	0.5114	49.7%	31.6%
	Underdrain		0.9624	0.4452		0.5172	0.0000	0.0000				
Total		1.6187		0.8535			0.0000	0.0000	0.7653	0.8535		52.7%
			1									02
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
	Pond + Media	0.2699	0.2699	0.0030	0.2669	0.0000	0.0000	0.0000	0.1295	0.1403	52.0%	19.0%
Bioretention W	Underdrain		0.2669	0.1374		0.1295	0.0000	0.0000				
Bioretention W		0.4704	0.4704	0.0096	0.4608	0.0000	0.0000	0.0000	0.2692	0.2011	42.8%	27.2%
	Pond + Media		0.4600	0.1916		0.2692	0.0000	0.0000	1			
	Pond + Media Underdrain		0.4608				0.0000	0.0000	0.3988	0.3415		46.1%
Bioretention S		0.7403	0.4608	0.3415								•
Bioretention S		0.7403	0.4608	0.3415								
Bioretention S		0.7403	0.4608	0.3415		1						
Bioretention S		0.7403 Inflow	Inflow to	0.3415 Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
Bioretention S Total ORTHOP	Underdrain				Flow to underlayer	Overflow	Start storage	End storage	Outflow from BMP	Load removed	% removed (based on	
Bioretention S Total ORTHOP	Underdrain	Inflow	Inflow to			Overflow (lbs)						(based o
Bioretention S Total ORTHOP BMP	Underdrain	Inflow to BMP	Inflow to component	Decay	underlayer		storage	storage	from BMP	removed	(based on	(based o
Bioretention W Bioretention S Total ORTHOP BMP Bioretention W	Underdrain Components	Inflow to BMP (Ibs)	Inflow to component (lbs)	Decay (lbs)	underlayer (lbs)	(lbs)	storage (Ibs)	storage (Ibs)	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based or total inflo
Bioretention S Total DRTHOP BMP	Underdrain Components Pond + Media	Inflow to BMP (Ibs)	Inflow to component (lbs) 0.1076	Decay (lbs) 0.0012	underlayer (lbs)	(lbs) 0.0000	storage (Ibs) 0.0000	storage (Ibs) 0.0000	from BMP (lbs)	removed (lbs)	(based on BMP inflow)	(based o total inflo

Table K-6 2008 Flows and Loads of Subbasin 420 BMP Performance Evaluation Modeling

FLOW BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	
Bioretention W	Pond + Media	0.7639	0.7639	0.0030	0.7426	0.0183	0.0000	0.0000	0.6351	0.1119	14.7%	5.3%
	Underdrain		0.7426	0.1089		0.6168	0.0000	0.0169	1			
Bioretention S	Pond + Media	1.3315	1.3315	0.0051	1.2336	0.0928	0.0000	0.0000	1.1663	0.1438	10.8%	6.9%
	Underdrain		1.2336	0.1387		1.0735	0.0000	0.0214	1			
Total		2.0954		0.2557			0.0000	0.0383	1.8014	0.2557		12.2%
	•											
	total rainfall (in)	25.265										
dı	rainage area (ac)	2.014										
ove	erall runoff coeff	0.494										
BACT												1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention W	Pond + Media	659,218	659,218	72,817	577,620	8,782	0	0	278,262	380,406	57.7%	21.0%
	Underdrain		577,620	307,566		269,480	0	550				
Bioretention S	Pond + Media	1,149,077	1,149,077	175,160	929,662	44,256	0	0	534,303	613,836	53.4%	33.9%
	Underdrain		929,662	438,637		490,046	0	939			<u> </u>	
Total		1,808,295		994,180			0	1,489	812,565	994,241		55.0%
ORGN	1			,					1	1		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
	 	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention W	Pond + Media	2.2995	2.2995	0.0429	2.2334	0.0232	0.0000	0.0000	1.3296	0.9426	41.0%	14.9%
	Underdrain		2.2334	0.8994		1.3065	0.0000	0.0273				
Bioretention S	Pond + Media	4.0083	4.0083	0.1115	3.7785	0.1183	0.0000	0.0000	2.5966	1.3682	34.1%	21.7%
	Underdrain		3.7785	1.2564		2.4783	0.0000	0.0435				
Total		6.3078		2.3102			0.0000	0.0708	3.9262	2.3108		36.6%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention W	Pond + Media	0.8063	0.8063	0.0843	0.7092	0.0127	0.0000	0.0000	0.3792	0.4263	52.9%	19.3%
	Underdrain		0.7092	0.3419		0.3665	0.0000	0.0008				
Bioretention S	Pond + Media	1.4053	1.4053	0.1966	1.1402	0.0685	0.0000	0.0000	0.7239	0.6800	48.4%	30.7%
	Underdrain		1.1402	0.4833		0.6554	0.0000	0.0014				
Total		2.2116		1.1062			0.0000	0.0023	1.1031	1.1063		50.0%
NO3N									-	-		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
Bioretention W	Pond + Media	1.5642	1.5642	0.1175	1.4243	0.0224	0.0000	0.0000	0.7723	0.7888	50.4%	18.4%
	Underdrain		1.4243	0.6712		0.7499	0.0000	0.0031			<u> </u>	
Bioretention S	Pond + Media	2.7265	2.7265	0.2820	2.3269	0.1175	0.0000	0.0000	1.4931	1.2280	45.0%	28.6%
	Underdrain		2.3269	0.9459		1.3756	0.0000	0.0053			<u> </u>	
Total		4.2907		2.0166			0.0000	0.0085	2.2655	2.0168		47.0%
ORGP		· · · · · · · · · · · · · · · · · · ·				r	r			r		1
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention W	Pond + Media	0.7205	0.7205	0.0157	0.6974	0.0074	0.0000	0.0000	0.4080	0.3051	42.3%	15.4%
	Underdrain		0.6974	0.2893		0.4005	0.0000	0.0075			1	
Bioretention S	Pond + Media	1.2560	1.2560	0.0405	1.1769	0.0386	0.0000	0.0000	0.7957	0.4482	35.7%	22.7%
	Underdrain		1.1769	0.4076		0.7571	0.0000	0.0121			<u> </u>	
Total		1.9765		0.7531			0.0000	0.0196	1.2037	0.7532		38.1%
ORTHOP	1											
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% removed
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based on
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflow
	Pond + Media	0.2853	0.2853	0.0062	0.2762	0.0029	0.0000	0.0000	0.1615	0.1209	42.4%	15.4%
Bioretention W		1				0.1585	0.0000	0.0030	1			
Bioretention W	Underdrain		0.2762	0.1147		0.1385	0.0000	0.0050				
Bioretention W Bioretention S	Underdrain Pond + Media	0.4974	0.2762	0.0160	0.4662	0.0152	0.0000	0.0000	0.3152	0.1775	35.7%	22.7%
		0.4974			0.4662				0.3152	0.1775	35.7%	22.7%

Table K-7 2009 Flows and Loads of Subbasin 420 BMP Performance Evaluation Modeling

BMP	Components	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflo
lioretention W	Pond + Media	0.9855	0.9855	0.0032	0.7863	0.1960	0.0000	0.0000	0.8931	0.0981	9.8%	3.6%
	Underdrain		0.7863	0.0949		0.6971	0.0169	0.0112	1			
Bioretention S	Pond + Media	1.7179	1.7179	0.0041	1.2367	0.4771	0.0000	0.0000	1.5921	0.1310	7.5%	4.8%
	Underdrain		1.2367	0.1269		1.1151	0.0214	0.0162	1			
Fotal		2.7035	1	0.2291			0.0383	0.0274	2.4852	0.2291		8.4%
	1						1	1	1		1	
	total rainfall (in)	27.74										
	rainage area (ac)	2.014										
	erall runoff coeff	0.581										
006	an funor coerr	0.561										
BACT	Components	1-61	1-0	Deres	F 1	Quartheau	Chart	E.d.	0.46	Land	% removed	% remov
BMP	components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load		
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based c
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	
Bioretention W	Pond + Media	543,839	543,839	60,159	465,272	18,408	0	0	266,786	277,592	51.0%	18.6%
	Underdrain		465,272	217,456		248,378	550	11				
Bioretention S	Pond + Media	948,105	948,105	131,779	741,827	74,498	0	0	487,720	461,304	48.6%	30.9%
	Underdrain		741,827	329,564		413,223	939	19				
Гotal		1,491,943		738,958			1,489	30	754,506	738,896		49.5%
	•						•	•	•		•	
DRGN												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component	,	underlayer	-	storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention W	Pond + Media	1.8168	1.8168	0.0330	1.7388	0.0451	0.0000	0.0000	1.2127	0.6206	33.7%	12.3%
	Underdrain	1.5105	1.7388	0.5878	1.7500	1.1676	0.0273	0.0108	1.212/	0.0200	33.776	12.370
Bioretention S	Pond + Media	2 1675			2,8001				2 1900	1.0000	21.20/	10.0%
sioretention S		3.1675	3.1675	0.0786	2.8961	0.1928	0.0000	0.0000	2.1860	1.0060	31.3%	19.9%
	Underdrain		2.8961	0.9276		1.9933	0.0435	0.0189				
Total		4.9843		1.6269			0.0708	0.0297	3.3987	1.6266		32.2%
NH3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remov
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention W	Pond + Media	0.9701	0.9701	0.1165	0.7221	0.1315	0.0000	0.0000	0.5680	0.4029	41.5%	15.1%
	Underdrain	0.5701	0.7221	0.2864	0.7221	0.4365	0.0008	0.0000	0.5000	0.1025	12.570	10.170
Bioretention S	Pond + Media	1.6909	1.6909	0.2204	1.1271	0.3368	0.0000	0.0000	1.0404	0.6520	38.5%	24.5%
bioretention 3		1.0505			1.12/1		0.0014	0.0000	1.0404	0.0320	56.5%	24.3%
	Underdrain		1.1271	0.4249		0.7036						
Total		2.6610		1.0550			0.0023	0.0001	1.6084	1.0549		39.6%
NO3N						-					1	L .
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioretention W	Pond + Media	1.4734	1.4734	0.1175	1.2139	0.1420	0.0000	0.0000	0.8802	0.5961	40.4%	14.7%
	Underdrain		1.2139	0.4787		0.7382	0.0031	0.0002				
Bioretention S	Pond + Media	2.5681	2.5681	0.2403	1.9417	0.3861	0.0000	0.0000	1.5986	0.9745	37.9%	24.1%
	Underdrain		1.9417	0.7343		1.2126	0.0053	0.0004	T		1	1
Гotal		4.0415		1.5708			0.0085	0.0006	2.4789	1.5706	1	38.8%
	1			1.5700			0.0005	0.0000	2.7705	1.5700		50.070
ORGP												
BMP	Components	Inflow	Inflow to	Decov	Elow to	Overflow	Start	End	Outflow	load	% removed	% remov
PIVIP	Components			Decay	Flow to	Overnow	Start	End		Load	% removed	
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
Bioretention W	Pond + Media	0.5644	0.5644	0.0119	0.5379	0.0146	0.0000	0.0000	0.3699	0.1995	34.9%	12.7%
	Underdrain		0.5379	0.1877		0.3553	0.0075	0.0025				
	Pond + Media	0.9840	0.9840	0.0284	0.8954	0.0602	0.0000	0.0000	0.6691	0.3226	32.4%	20.6%
Bioretention S	Underdrain		0.8954	0.2944		0.6089	0.0121	0.0043				
Bioretention S		1.5483		0.5223			0.0196	0.0068	1.0390	0.5222	1	33.3%
		2.2.00	1								1	20.070
Fotal						0	Start	End	Outflow	Load	% removed	% remov
Total DRTHOP		Inflow	Inflow to	Decay	Elow: to		JUDIC	Ena	Outrow	LUdu	70 reinoved	
Fotal	Components	Inflow	Inflow to	Decay	Flow to	Overflow	at a	at a	from DAAD	10 m	(haa!	
Total DRTHOP		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	
Total DRTHOP BMP	Components	to BMP (lbs)	component (lbs)	(lbs)	underlayer (lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	BMP inflow)	total inflo
Total DRTHOP BMP	Components Pond + Media	to BMP	component (lbs) 0.2237	(lbs) 0.0047	underlayer	(lbs) 0.0057	(lbs) 0.0000	(lbs) 0.0000				total inflo
Total ORTHOP	Components	to BMP (lbs)	component (lbs)	(lbs)	underlayer (lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	BMP inflow)	(based o total inflo 12.7%
Total DRTHOP BMP	Components Pond + Media	to BMP (lbs)	component (lbs) 0.2237	(lbs) 0.0047	underlayer (lbs)	(lbs) 0.0057	(lbs) 0.0000	(lbs) 0.0000	(lbs)	(Ibs)	BMP inflow)	total inflo
Total DRTHOP BMP Bioretention W	Components Pond + Media Underdrain	to BMP (lbs) 0.2237	component (lbs) 0.2237 0.2133	(lbs) 0.0047 0.0744	underlayer (lbs) 0.2133	(lbs) 0.0057 0.1409	(lbs) 0.0000 0.0030	(lbs) 0.0000 0.0010	(lbs) 0.1466	(lbs) 0.0791	BMP inflow) 34.9%	total infle 12.7%

Table K-8 2010 Flows and Loads of Subbasin 420 BMP Performance Evaluation Modeling

BMP	Components	Inflow to BMP	Inflow to component	Evaporation	Flow to underlayer	Overflow	Start storage	End storage	Outflow from BMP	Flow removed	% removed (based on	% remove (based on
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	BMP inflow)	total inflo
lioretention W	Pond + Media	3.8158	3.8158	0.0149	3.1883	0.6127	0.0000	0.0000	3.3959	0.4087	10.7%	3.9%
iorelention w		3.8158			3.1003				3.3959	0.4087	10.7%	3.9%
Discustoration C	Underdrain	6 6027	3.1883	0.3938	F 0040	2.7832	0.0000	0.0112	C 1420	0.5245	8.0%	F 10/
Bioretention S	Pond + Media	6.6937	6.6937	0.0212	5.0940	1.5784	0.0000	0.0000	6.1429	0.5345	8.0%	5.1%
	Underdrain		5.0940	0.5133		4.5645	0.0000	0.0162				
Fotal		10.5095		0.9432			0.0000	0.0274	9.5388	0.9432		9.0%
	total rainfall (in)	112.271										
d	rainage area (ac)	2.014										
ove	erall runoff coeff	0.558										
BACT												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	BMP inflow)	total inflo
Bioretention W	Pond + Media	2,254,051	2,254,051	264,910	1,930,367	58,776	0	0	1,027,293	1,226,747	54.4%	19.8%
	Underdrain		1,930,367	961,838	_,	968,517	0	11	_,,	_,,		
Bioretention S	Pond + Media	3,952,892	3,952,892	585,217	3,089,285	278,391	0	0	1,978,371	1,974,501	50.0%	31.8%
Sioretention 3		3,932,092			5,065,265				1,970,371	1,974,501	50.0%	51.6%
	Underdrain		3,089,285	1,389,286		1,699,980	0	19				
Fotal		6,206,943		3,201,250			0	30	3,005,665	3,201,248		51.6%
ORGN								•		-		
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based o
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioretention W	Pond + Media	7.7301	7.7301	0.1554	7.4230	0.1517	0.0000	0.0000	4.9907	2.7286	35.3%	12.8%
	Underdrain	7.7501	7.4230	2.5730	711200	4.8391	0.0000	0.0108		2.7200	55.570	12.070
Bioretention S	Pond + Media	13.5419	13.5419	0.3667	12.4076	0.7676	0.0000	0.0000	9.4639	4.0592	30.0%	19.1%
bioretention 5	Underdrain	13.3415		3.6924	12.4070				5.4035	4.0332	30.076	13.170
	Underdrain		12.4076			8.6963	0.0000	0.0189				
Total		21.2720		6.7875			0.0000	0.0297	14.4546	6.7877		31.9%
NH3N			-	-				-	-		-	
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflov
Bioretention W	Pond + Media	3.6049	3.6049	0.4162	2.7736	0.4151	0.0000	0.0000	1.9902	1.6148	44.8%	16.3%
	Underdrain	5.0015	2.7736	1.1985	2.7750	1.5751	0.0000	0.0000	1.5502	1.01.10	1.1.070	10.070
		6 2240			4 2774				2 7724	2 5520	40.40/	25 70/
Bioretention S	Pond + Media	6.3249	6.3249	0.8439	4.3771	1.1039	0.0000	0.0000	3.7721	2.5528	40.4%	25.7%
	Underdrain		4.3771	1.7089		2.6682	0.0000	0.0000				
Total		9.9298		4.1675			0.0000	0.0001	5.7623	4.1675		42.0%
NO3N												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
		to BMP	component		underlayer		storage	storage	from BMP	removed	(based on	(based or
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	total inflo
Bioretention W	Pond + Media	6.0237	6.0237	0.4997	5.0626	0.4614	0.0000	0.0000	3.3918	2.6316	43.7%	15.9%
Solution W		0.0237			5.0020				3.3910	2.0310	+3.770	13.370
Disease and C	Underdrain	40 5005	5.0626	2.1320	0.4202	2.9304	0.0000	0.0002	6 4224	4 4 9 5 9	20.001	24.001
Bioretention S	Pond + Media	10.5365	10.5365	1.0530	8.1302	1.3533	0.0000	0.0000	6.4301	4.1060	39.0%	24.8%
	Underdrain		8.1302	3.0530		5.0768	0.0000	0.0004				
Total		16.5602		6.7376			0.0000	0.0006	9.8220	6.7377		40.7%
ORGP												
BMP	Components	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	% removed	% remove
DIVIF		to BMP	component	,	underlayer	-	storage	storage	from BMP	removed	(based on	(based or
DIVIP	1	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	BMP inflow)	
DIVIF		(2.4288	0.0568	2.3228	0.0491	0.0000	0.0000	1.5345	0.8918	36.7%	13.3%
	Pond + Media	2 4288		0.0368	2.3220				1.3343	0.0310	50.770	13.3%
Bioretention W	Pond + Media	2.4288				1.4854	0.0000	0.0025	2.0120	1 2250	21.40/	20.001
Bioretention W	Underdrain		2.3228		2 0777	0.2426	0.0000	0.0000	2.9138	1.3358	31.4%	20.0%
	Underdrain Pond + Media	2.4288 4.2539	2.3228 4.2539	0.1336	3.8777				1		1	
Bioretention W	Underdrain	4.2539	2.3228	0.1336 1.2022	3.8777	2.6712	0.0000	0.0043				
Bioretention W Bioretention S	Underdrain Pond + Media		2.3228 4.2539	0.1336	3.8777		0.0000	0.0043	4.4483	2.2275		33.3%
Bioretention W Bioretention S	Underdrain Pond + Media	4.2539	2.3228 4.2539	0.1336 1.2022	3.8777			1	4.4483	2.2275		33.3%
Bioretention W Bioretention S Fotal	Underdrain Pond + Media	4.2539	2.3228 4.2539	0.1336 1.2022	3.8777			1	4.4483	2.2275		33.3%
Bioretention W Bioretention S Total DRTHOP	Underdrain Pond + Media Underdrain	4.2539 6.6827	2.3228 4.2539 3.8777	0.1336 1.2022 2.2275		2.6712	0.0000	0.0068	1		% removed	
Bioretention W Bioretention S Fotal	Underdrain Pond + Media	4.2539 6.6827 Inflow	2.3228 4.2539 3.8777	0.1336 1.2022	Flow to		0.0000 Start	0.0068 End	Outflow	Load	% removed	% remov
Bioretention W Bioretention S Fotal DRTHOP	Underdrain Pond + Media Underdrain	4.2539 6.6827 Inflow to BMP	2.3228 4.2539 3.8777 Inflow to component	0.1336 1.2022 2.2275 Decay	Flow to underlayer	2.6712 Overflow	0.0000 Start storage	0.0068 End storage	Outflow from BMP	Load removed	(based on	% remov
Bioretention W Bioretention S Fotal DRTHOP BMP	Underdrain Pond + Media Underdrain Components	4.2539 6.6827 Inflow to BMP (lbs)	2.3228 4.2539 3.8777 Inflow to component (lbs)	0.1336 1.2022 2.2275 Decay (lbs)	Flow to underlayer (lbs)	2.6712 Overflow (lbs)	0.0000 Start storage (lbs)	0.0068 End storage (Ibs)	Outflow from BMP (lbs)	Load removed (Ibs)	(based on BMP inflow)	% remov (based o total inflo
Bioretention W Bioretention S Fotal DRTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	4.2539 6.6827 Inflow to BMP	2.3228 4.2539 3.8777 Inflow to component (lbs) 0.9679	0.1336 1.2022 2.2275 Decay (lbs) 0.0225	Flow to underlayer	2.6712 Overflow (lbs) 0.0193	0.0000 Start storage (lbs) 0.0000	0.0068 End storage (Ibs) 0.0000	Outflow from BMP	Load removed	(based on	% remove (based o
Bioretention W Bioretention S Total DRTHOP BMP Bioretention W	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	4.2539 6.6827 Inflow to BMP (lbs) 0.9679	2.3228 4.2539 3.8777 Inflow to component (lbs) 0.9679 0.9261	0.1336 1.2022 2.2275 Decay (lbs) 0.0225 0.3325	Flow to underlayer (lbs) 0.9261	2.6712 Overflow (lbs) 0.0193 0.5927	0.0000 Start storage (lbs) 0.0000 0.0000	0.0068 End storage (lbs) 0.0000 0.0010	Outflow from BMP (lbs) 0.6119	Load removed (lbs) 0.3550	(based on BMP inflow) 36.7%	% remove (based or total inflo
Bioretention W Bioretention S Fotal DRTHOP BMP	Underdrain Pond + Media Underdrain Components Pond + Media	4.2539 6.6827 Inflow to BMP (lbs)	2.3228 4.2539 3.8777 Inflow to component (lbs) 0.9679	0.1336 1.2022 2.2275 Decay (lbs) 0.0225	Flow to underlayer (lbs)	2.6712 Overflow (lbs) 0.0193	0.0000 Start storage (lbs) 0.0000	0.0068 End storage (Ibs) 0.0000	Outflow from BMP (lbs)	Load removed (Ibs)	(based on BMP inflow)	% remove (based or total inflo
Bioretention W Bioretention S Total DRTHOP BMP Bioretention W	Underdrain Pond + Media Underdrain Components Pond + Media Underdrain	4.2539 6.6827 Inflow to BMP (lbs) 0.9679	2.3228 4.2539 3.8777 Inflow to component (lbs) 0.9679 0.9261	0.1336 1.2022 2.2275 Decay (lbs) 0.0225 0.3325	Flow to underlayer (lbs) 0.9261	2.6712 Overflow (lbs) 0.0193 0.5927	0.0000 Start storage (lbs) 0.0000 0.0000	0.0068 End storage (lbs) 0.0000 0.0010	Outflow from BMP (lbs) 0.6119	Load removed (lbs) 0.3550	(based on BMP inflow) 36.7%	% remov (based o total inflo 13.3%

Table K-9 2007-2010 Flows and Loads of Subbasin 420 BMP Performance Evaluation Modeling

Table K-10 Summary of Flow and Load Removed of Subbasin 420 BMP Performance Evaluation Modeling

51.004/								C							
FLOW BMP															
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.1175	0.0812	0.1119	0.0981	0.4087	6.4%	34.6%	14.7%	9.8%	10.7%	2.3%	12.6%	5.3%	3.6%	3.9%
Bioretention S	0.1520	0.1078	0.1438	0.1310	0.5345	4.7%	26.3%	10.8%	7.5%	8.0%	3.0%	16.7%	6.9%	4.8%	5.1%
Total	0.2695	0.1889	0.2557	0.2291	0.9432						5.3%	29.3%	12.2%	8.4%	9.0%

BACT															
BMP		Load	l removed (1	.0^6)			% removed	l (based on B	MP inflow)			% removed	(based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	408,773	159,976	380,406	277,592	1,226,747	51.2%	63.5%	57.7%	51.0%	54.4%	18.4%	23.2%	21.0%	18.6%	19.8%
Bioretention S	651,987	247,375	613,836	461,304	1,974,501	46.0%	56.4%	53.4%	48.6%	50.0%	29.4%	35.8%	33.9%	30.9%	31.8%
Total	1,060,760	407,351	994,241	738,896	3,201,248						47.9%	59.0%	55.0%	49.5%	51.6%

ORGN

BMP		Loa	d removed (lbs)			% removed	l (based on E	8MP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.7081	0.4573	0.9426	0.6206	2.7286	26.0%	51.3%	41.0%	33.7%	35.3%	9.4%	18.7%	14.9%	12.3%	12.8%
Bioretention S	1.0320	0.6530	1.3682	1.0060	4.0592	21.5%	42.0%	34.1%	31.3%	30.0%	13.7%	26.7%	21.7%	19.9%	19.1%
Total	1.7401	1.1102	2.3108	1.6266	6.7877						23.1%	45.4%	36.6%	32.2%	31.9%

NH3N

BMP		Loa	d removed (lbs)			% removed	l (based on B	MP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.6125	0.1731	0.4263	0.4029	1.6148	39.9%	59.0%	52.9%	41.5%	44.8%	14.4%	21.5%	19.3%	15.1%	16.3%
Bioretention S	0.9546	0.2662	0.6800	0.6520	2.5528	35.1%	52.1%	48.4%	38.5%	40.4%	22.4%	33.1%	30.7%	24.5%	25.7%
Total	1.5671	0.4393	1.1063	1.0549	4.1675						36.8%	54.6%	50.0%	39.6%	42.0%

NO3N

BMP		Loa	d removed (lbs)			% removed	l (based on B	BMP inflow)			% removed	(based on to	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.9047	0.3420	0.7888	0.5961	2.6316	37.8%	58.0%	50.4%	40.4%	43.7%	13.7%	21.1%	18.4%	14.7%	15.9%
Bioretention S	1.3921	0.5114	1.2280	0.9745	4.1060	33.0%	49.7%	45.0%	37.9%	39.0%	21.1%	31.6%	28.6%	24.1%	24.8%
Total	2.2968	0.8535	2.0168	1.5706	6.7377						34.8%	52.7%	47.0%	38.8%	40.7%

ORGP

BMP		Loa	d removed (lbs)			% removed	l (based on E	BMP inflow)			% removed	l (based on t	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.2468	0.1403	0.3051	0.1995	0.8918	28.2%	52.0%	42.3%	34.9%	36.7%	10.2%	19.0%	15.4%	12.7%	13.3%
Bioretention S	0.3638	0.2011	0.4482	0.3226	1.3358	23.6%	42.8%	35.7%	32.4%	31.4%	15.0%	27.2%	22.7%	20.6%	20.0%
Total	0.6107	0.3415	0.7532	0.5222	2.2275						25.3%	46.1%	38.1%	33.3%	33.3%

ORTHOP

BMP		Loa	d removed (lbs)			% removed	l (based on B	BMP inflow)			% removed	l (based on te	otal inflow)	
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Bioretention W	0.0990	0.0561	0.1209	0.0791	0.3550	28.2%	52.1%	42.4%	34.9%	36.7%	10.1%	19.0%	15.4%	12.7%	13.3%
Bioretention S	0.1461	0.0803	0.1775	0.1281	0.5320	23.2%	42.8%	35.7%	32.4%	31.2%	14.9%	27.2%	22.7%	20.6%	19.9%
Total	0.2451	0.1364	0.2984	0.2072	0.8871						24.9%	46.2%	38.1%	33.3%	33.2%

L. Subbasin 560 BMP Performance Evaluation Modeling

Site Description and Land uses

This is the site used for site-scale HSPF model calibration. Details of this model can be found in Attachment A, "Calibration of Site-Scale HSPF Model". Instead of the storm event simulation in the calibration, simulation was performed for the 2007 to 2010 period. Note that the model was originally developed for the proof-of-concept project and no design-level detail was involved.

A bioswale layout is placed along the median of Sydney Brooks Drive and City-Base Landing as shown in Exhibit L-1. The pervious and impervious areas are shown in Table L-1. The original USAR subbasinscale watershed model with simulation period from 2007 to 2010 was modified to use the parameters from the site-scale model calibration and to include the BMP to be modeled for the Subbasin 560 site. The procedure of modifying the model file was similar to that described for the Subbasin 70 site-scale modeling in Attachment B.

Exhibit L-1 Selected Site for Subbasin 560

Land use	IC%	Pervious	Impervious	Total
		Area	Area	Area
		(ac)	(ac)	(ac)
Undeveloped Meadow	0	0.1131	0	0.1131
Residential High Density	60	0.0996	0.1493	0.2489
Commercial	58	1.1052	1.5261	2.6313
Transportation	90	0.0497	0.4482	0.4979
TOTAL	60.8	1.3676	2.1236	3.4912

Table L-1 Land uses of Subbasin 560 BMP Site

Note: The IC% used in the calibration model are from the proof-of-concept site-scale study and are different from those in the 2017 land use data.

Water Quality Volume Calculations

Using the WQV formula discussed in Section C, the required WQV for the selected BMP site is: $1.5^{"}/12 \ge 0.6 \ge 2.1236$ ac $\ge 1.2 = 0.191$ ac-ft

where the 1.2 is to apply 20% additional WQV to allow for long-term sediment accumulation in the BMP. This 20% contingency factor is required by the River Authority's LID Manual (SARA, 2019; page B-117). The water quality volume and surface area of the BMP are shown in Table L-2.

Table L-2 Water Quality Vol	ume and Surface Area of	Subbasin 560 BMP Site
BMP	WQV (ac-ft)	Surface area (ac)
Bioswale	0.5708	0.4114
Required	0.1910	

Table L-2 Water Quality Volume and Surface Area of Subbasin 560 BMP Site

Note: Surface area is the area at the water level of the WQV.

Results

As listed in Table L-3, using the model output flows and EC loads, the Geomean and flow-weighted Geomean of EC concentrations were calculated for the BMP inflow and outflow over the 4-year simulation period. The Geomeans listed include values for the inflow and outflow of the bioswale only as well as for the system (i.e., bioswale and bypass). Both the outflow EC Geomeans and flow-weighted Geomeans of the bioswale are substantially lower than the inflow.

For the entire system including the bypass, because most of the inflows to the bioswale infiltrated to the ground, most of the time the outflow concentration was similar to the concentration of the bypass flow concentrations, which were the same as the inflow concentrations. However, similar to the bioswale in Subbasin 70, when there were overflows from the bioswale containing delayed high-concentration water, the outflow Geomean and flow-weighted Geomean are higher than the inflow.

Modeled output annual inflows and outflows from 2007 to 2010 including flows, bacteria and nutrient loads are listed in Tables L-4 to L-7. The flows and loads removed by the bioswale BMP and the

corresponding removal percentages are also listed in these tables. Table L-8 shows the same set of information for the 4-year total. The loads removed and removal percentages calculated are summarized in Table L-9 for easier comparison. The Triple Bottom Line Analysis conducted by Autocase includes such considerations and provides a more comprehensive evaluation of the costs and multi benefits of the BMPs.

As noted in the calibration technical memo, the flow into the bioswale was almost entirely infiltrated. The load reduction achieved by the BMP was mostly due to removing the EC load in the infiltrated flow. When excluding the bypass flows, the removal percentages are close to 100%.

When the bypass flows are included, however, the removal percentages drop to low 20s since the inflow to the bioswale is 22.9% of the total flow. In 2008, a dry year, the flows were small enough that all flows were infiltrated. As a result, the removal percentages excluding and including the bypass flow are 100% and 22.9%, respectively, for 2008.

Note that the "removed" EC might stay and continue to reproduce in the bottom sediment/soil of a bioswale. If so, these EC might be resuspended by future storm events and reappear in the water column resulting in higher concentrations in the outflow than inflow. This "BMP becoming an incubator of pollutant loads" has been reported in publications/presentations such as StormCon. A monitoring program is recommended to document long-term removal for bioswale located on sandy soil where infiltration is high and 100% removal through infiltration is possible.

	Inf	low	Out	flow
BMP	Geomean (#/dL)	Flow-weighted geomean (#/dL)	Geomean (#/dL)	Flow-weighted geomean (#/dL)
Bioswale (exclude bypass)	49,415	9,222	4,309	4,406
System (include bypass)	49,417	9,222	50,008	10,708

Table L-3 EC Concentrations of Subbasin 560 BMP Layouts Over 2007-2010

Table L-4 2007 Flows and Loads of Subbasin 560 BMP Performance Evaluation Modelin	ng
---	----

FLOW

11000														
BMP	Components	Total	Bypass	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Rem	noval
		flow	flow	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
Bioswale	Swale + Media	27.2189	20.9856	6.2333	6.2333	0.0199	5.3633	0.8502	0.0000	0.0000	1.9494	4.2839	68.7%	15.7%
	Underdrain				5.3633	0.0515	4.2125	1.0992	0.0000	0.0000			1	
	Underdrain				5.3633	0.0515	4.2125	1.0992	0.0000	0.0000				

total rainfall (in)48.295drainage area (ac)15.245overall runoff coeff0.444

BACT

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		
Bioswale	Swale + Media	6,478,861	4,995,153	1,483,709	1,483,709	88,315	1,342,896	52,499	0	0	137,870	1,345,839	90.7%	20.8%
	Underdrain	1			1,342,896	164,187	1,093,337	85,371	0	0]			

ORGN

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	oval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	40.5210	31.2413	9.2797	9.2797	0.0843	8.9917	0.2037	0.0000	0.0000	0.7991	8.4806	91.4%	20.9%
	Underdrain				8.9917	0.2010	8.1953	0.5954	0.0000	0.0000				

NH3N

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	22.6422	17.4569	5.1852	5.1852	0.3892	4.1577	0.6384	0.0000	0.0000	1.1192	4.0660	78.4%	18.0%
	Underdrain				4.1577	0.5041	3.1728	0.4808	0.0000	0.0000				

NO3N

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	oval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	34.7066	26.7584	7.9481	7.9481	0.3883	6.9441	0.6157	0.0000	0.0000	1.3225	6.6256	83.4%	19.1%
	Underdrain				6.9441	0.6110	5.6263	0.7068	0.0000	0.0000				

ORGP

ondi														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	12.9814	10.0086	2.9729	2.9729	0.0315	2.8812	0.0602	0.0000	0.0000	0.2502	2.7226	91.6%	21.0%
	Underdrain				2.8812	0.0735	2.6177	0.1900	0.0000	0.0000				

ORTHOP

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	5.4666	4.2147	1.2519	1.2519	0.0146	1.1854	0.0520	0.0000	0.0000	0.1366	1.1153	89.1%	20.4%
	Underdrain				1.1854	0.0310	1.0698	0.0846	0.0000	0.0000				

Table L-5 2008 Flows and Loads of Subbasin 560 BMP Performance Evalu	luation Modeling
--	------------------

Underdrain

0.3525

0.0034

0.3491

0.0000

0.0000

0.0000

FLOW												e		
BMP	Components	Total	Bypass	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Rem	noval
		flow	flow	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
Bioswale	Swale + Media	3.3608	2.5911	0.7696	0.7696	0.0006	0.7691	0.0000	0.0000	0.0000	0.0000	0.7696	100.0%	22.9%
	Underdrain				0.7691	0.0103	0.7588	0.0000	0.0000	0.0000				Ĺ
	total rainfall (in)	10.971												
	rainage area (ac)	15.245												
	erall runoff coeff	0.241												
ВАСТ														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	1
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		
Bioswale	Swale + Media	1,928,021	1,486,490	441,531	441,531	1,095	440,436	0	0	0	0	441,531	100.0%	22.9%
	Underdrain	,,-	, ,	,	440,436	24,268	416,168	0	0	0		,		
open														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	1
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	12.7636	9.8406	2.9230	2.9230	0.0003	2.9227	0.0000	0.0000	0.0000	0.0000	2.9230	100.0%	22.9%
	Underdrain				2.9227	0.0236	2.8991	0.0000	0.0000	0.0000	1			
	•										•			
NH3N							-				0.10			
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	-	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
o. I		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	100.00/	22.00/
Bioswale	Swale + Media Underdrain	4.0310	3.1078	0.9231	0.9231	0.0043	0.9189 0.8786	0.0000	0.0000	0.0000	0.0000	0.9231	100.0%	22.9%
	Underdrain				0.9189	0.0405	0.8780	0.0000	0.0000	0.0000				i
NO3N					1									
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	-	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	8.2513	6.3617	1.8896	1.8896	0.0034	1.8862	0.0000	0.0000	0.0000	0.0000	1.8896	100.0%	22.9%
	Underdrain				1.8862	0.0621	1.8242	0.0000	0.0000	0.0000				Ĺ
ORGP														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	3.8608	2.9766	0.8841	0.8841	0.0001	0.8840	0.0000	0.0000	0.0000	0.0000	0.8841	100.0%	22.9%
	Underdrain				0.8840	0.0086	0.8755	0.0000	0.0000	0.0000				<u>i</u>
ORTHOP														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	1.5393	1.1868	0.3525	0.3525	0.0001	0.3525	0.0000	0.0000	0.0000	0.0000	0.3525	100.0%	22.9%
	Unada ada ta			1	0.0505	0.0024	0.2404	0.0000	0.0000	0.0000	1	1	1	í .

Table L-6 2009 Flows and Loads of Subbasin 560 BMP Performance Evaluation Modeling
--

FLOW												-		
BMP	Components	Total	Bypass	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Rem	noval
		flow	flow	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypa:
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
Bioswale	Swale + Media	10.9294	8.4265	2.5029	2.5029	0.0077	2.4952	0.0000	0.0000	0.0000	0.2040	2.2989	91.8%	21.0%
	Underdrain				2.4952	0.0249	2.2662	0.2040	0.0000	0.0000				
	total rainfall (in)	25.265												
h	rainage area (ac)	15.245												
	erall runoff coeff	0.341												
ВАСТ	1													
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypa
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		
Bioswale	Swale + Media	5,047,997	3,891,969	1,156,028	1,156,028	31,808	1,124,223	0	0	0	27,610	1,128,418	97.6%	22.4%
	Underdrain				1,124,223	113,572	983,040	27,610	0	0				
ORGN														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component	,	underlayer		storage	storage	from BMP	removed	Exc. bypass	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	32.9032	25.3681	7.5351	7.5351	0.0291	7.5060	0.0000	0.0000	0.0000	0.1716	7.3635	97.7%	22.4%
biobinale	Underdrain	52.5052	2010001	710001	7.5060	0.1287	7.2057	0.1716	0.0000	0.0000	0.1710	10000	571770	22.170
	10.000.000			1	1									
NH3N											-			
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypa
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	11.2515	8.6748	2.5767	2.5767	0.0724	2.5043	0.0000	0.0000	0.0000	0.0986	2.4781	96.2%	22.0%
	Underdrain				2.5043	0.2354	2.1703	0.0986	0.0000	0.0000				
NO3N BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
Divin	components	load	load	to BMP	component	Decuy	underlayer	overnow	storage	storage	from BMP	removed	Exc. bypass	r
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	LAC. Dypass	пс. вура
Bioswale	Swale + Media	21.9112	16.8934	5.0179	5.0179	0.0934	4.9245	0.0000	0.0000	0.0000	0.1634	4.8544	96.7%	22.2%
DIOSWale	Underdrain	21.9112	10.8534	5.0175	4.9245	0.3320	4.4290	0.1634	0.0000	0.0000	0.1034	4.8344	50.7%	22.270
	onderdram				4.5245	0.5520	4.4250	0.1034	0.0000	0.0000				
ORGP														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypa
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	10.3102	7.9490	2.3611	2.3611	0.0108	2.3503	0.0000	0.0000	0.0000	0.0568	2.3043	97.6%	22.3%
	Underdrain				2.3503	0.0467	2.2467	0.0568	0.0000	0.0000				
OBTUOD														
ORTHOP BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	2.10. 579035	
Bioswale	Swale + Media	4.0838	3.1486	0.9352	0.9352	0.0043	0.9310	0.0000	0.0000	0.0000	0.0222	0.9130	97.6%	22.4%
DIDSWale	Underdrain	4.0000	3.1400	0.5552	0.9352	0.0043	0.8903	0.0000	0.0000	0.0000	0.0222	0.5130	57.0%	22.470

Table L-7 2010 Flows and Loads of Subbasin 560 BMP Performance	Evaluation Modeling
Table L-7 2010 Tlows and Ebads of Subbasin 500 Divit Terrormanee	L'valuation wiodening

BMP	Components	Total	Bypass	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Rem	noval
		flow	flow	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	,	
Bioswale	Swale + Media	14.1021	10.8726	3.2295	3.2295	0.0111	3.1504	0.0681	0.0000	0.0000	0.8292	2.4003	74.3%	17.0%
	Underdrain				3.1504	0.0225	2.3667	0.7611	0.0000	0.0000				
d	total rainfall (in) rainage area (ac)	27.74 15.245												
	erall runoff coeff	0.400												
000	erail runoit coeff	0.400												
ВАСТ														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		
Bioswale	Swale + Media	4,166,786	3,212,559	954,227	954,227	24,867	927,651	1,708	0	0	53,339	900,888	94.4%	21.6%
	Underdrain				927,651	93,661	782,358	51,632	0	0				
ORGN														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	26.0116	20.0547	5.9569	5.9569	0.0162	5.9370	0.0037	0.0000	0.0000	0.2956	5.6613	95.0%	21.8%
	Underdrain				5.9370	0.1014	5.5436	0.2919	0.0000	0.0000				
NH3N BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component	,	underlayer		storage	storage	from BMP	removed	Exc. bypass	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	13.4220	10.3482	3.0738	3.0738	0.1872	2.8427	0.0439	0.0000	0.0000	0.4045	2.6693	86.8%	19.9%
	Underdrain				2.8427	0.3173	2.1647	0.3606	0.0000	0.0000				
	10.000.0000													
NO3N	r					1								
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	20.7044	15.9629	4.7415	4.7415	0.1555	4.5432	0.0427	0.0000	0.0000	0.5032	4.2383	89.4%	20.5%
	Underdrain				4.5432	0.3352	3.7475	0.4605	0.0000	0.0000				
ORGP														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypas
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	8.0806	6.2301	1.8505	1.8505	0.0061	1.8430	0.0014	0.0000	0.0000	0.0932	1.7573	95.0%	21.7%
	Underdrain				1.8430	0.0366	1.7146	0.0918	0.0000	0.0000				
ORTHOP														
BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
5	Longonents	load	load	to BMP	component	Decca,	underlayer	3.0.0.0	storage	storage	from BMP	removed	Exc. bypass	
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	Exc. bypass	
Diegunale	Curala i Madia	2 2070	2 4720	0 7244	0.7244	0.0024	0.7215	0.0000	0.0000	0.0000	0.03/	0.0070	05.0%	21.00/

0.0024

0.0145

0.0006

0.0363

0.0000

0.0000

0.0000

0.0000

0.7315

0.6807

3.2070

Bioswale

Swale + Media Underdrain

2.4726

0.7344

0.7344

0.7315

0.0368

0.6976

95.0%

21.8%

Table L-8 2007-2010 Flows and Loads of Subbasin 560 BMP Performance Evaluation Modeling

E	10	w	

BMP	Components	Total	Bypass	Inflow	Inflow to	Evaporation	Flow to	Overflow	Start	End	Outflow	Flow	Rem	oval
		flow	flow	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
Bioswale	Swale + Media	55.6112	42.8758	12.7354	12.7354	0.0392	11.7780	0.9183	0.0000	0.0000	2.9827	9.7528	76.6%	17.5%
	Underdrain				11.7780	0.1092	9.6043	2.0644	0.0000	0.0000				

total rainfall (in)	112.271
drainage area (ac)	15.245
overall runoff coeff	0.390

BACT

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	noval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)	(10^6)		
Bioswale	Swale + Media	17,621,666	13,586,170	4,035,496	4,035,496	146,085	3,835,206	54,207	0	0	218,819	3,816,677	94.6%	21.7%
	Underdrain				3,835,206	395,689	3,274,903	164,612	0	0				

ORGN

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	112.1994	86.5047	25.6947	25.6947	0.1299	25.3574	0.2074	0.0000	0.0000	1.2663	24.4284	95.1%	21.8%
	Underdrain				25.3574	0.4547	23.8437	1.0589	0.0000	0.0000				

NH3N

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	oval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	51.3466	39.5878	11.7588	11.7588	0.6531	10.4235	0.6822	0.0000	0.0000	1.6222	10.1366	86.2%	19.7%
	Underdrain				10.4235	1.0971	8.3865	0.9400	0.0000	0.0000				

NO3N

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	85.5734	65.9764	19.5971	19.5971	0.6406	18.2980	0.6584	0.0000	0.0000	1.9891	17.6080	89.9%	20.6%
	Underdrain				18.2980	1.3404	15.6270	1.3307	0.0000	0.0000				

ORGP

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	oval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	35.2330	27.1643	8.0687	8.0687	0.0485	7.9585	0.0616	0.0000	0.0000	0.4003	7.6684	95.0%	21.8%
	Underdrain				7.9585	0.1655	7.4544	0.3386	0.0000	0.0000				

ORTHOP

BMP	Components	Total	Bypass	Inflow	Inflow to	Decay	Flow to	Overflow	Start	End	Outflow	Load	Rem	ioval
		load	load	to BMP	component		underlayer		storage	storage	from BMP	removed	Exc. bypass	Inc. bypass
		(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Bioswale	Swale + Media	14.2967	11.0226	3.2741	3.2741	0.0213	3.2003	0.0525	0.0000	0.0000	0.1956	3.0785	94.0%	21.5%
	Underdrain				3.2003	0.0673	2.9899	0.1431	0.0000	0.0000				

											<u> </u>				
Constituent	Flow removed (ac-ft)				% removed (exc. bypass)				% removed (inc. bypass)						
	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year	2007	2008	2009	2010	4-year
Flow	4.2839	0.7696	2.2989	2.4003	9.7528	68.7%	100.0%	91.8%	74.3%	76.6%	15.7%	22.9%	21.0%	17.0%	17.5%
BACT	1,345,839	441,531	1,128,418	900,888	3,816,677	90.7%	100.0%	97.6%	94.4%	94.6%	20.8%	22.9%	22.4%	21.6%	21.7%
ORGN	8.4806	2.9230	7.3635	5.6613	24.4284	91.4%	100.0%	97.7%	95.0%	95.1%	20.9%	22.9%	22.4%	21.8%	21.8%
NH3N	4.0660	0.9231	2.4781	2.6693	10.1366	78.4%	100.0%	96.2%	86.8%	86.2%	18.0%	22.9%	22.0%	19.9%	19.7%
NO3N	6.6256	1.8896	4.8544	4.2383	17.6080	83.4%	100.0%	96.7%	89.4%	89.9%	19.1%	22.9%	22.2%	20.5%	20.6%
ORGP	2.7226	0.8841	2.3043	1.7573	7.6684	91.6%	100.0%	97.6%	95.0%	95.0%	21.0%	22.9%	22.3%	21.7%	21.8%
ORTHOP	1.1153	0.3525	0.9130	0.6976	3.0785	89.1%	100.0%	97.6%	95.0%	94.0%	20.4%	22.9%	22.4%	21.8%	21.5%

Table L-9 Summary of Flow and Load Removed of Subbasin 560 BMP Performance Evaluation Modeling

Subtask 5.1 - Triple Bottom Line (TBL) and Sustainable Return of Investment (SROI) Evaluation Report

The evaluation report on TBL benefits (social, environmental, economic) and SROI findings for the eight proposed GSI implementation sites. Report begins on next page.

TRIPLE BOTTOM LINE-COST BENEFIT ANALYSIS

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

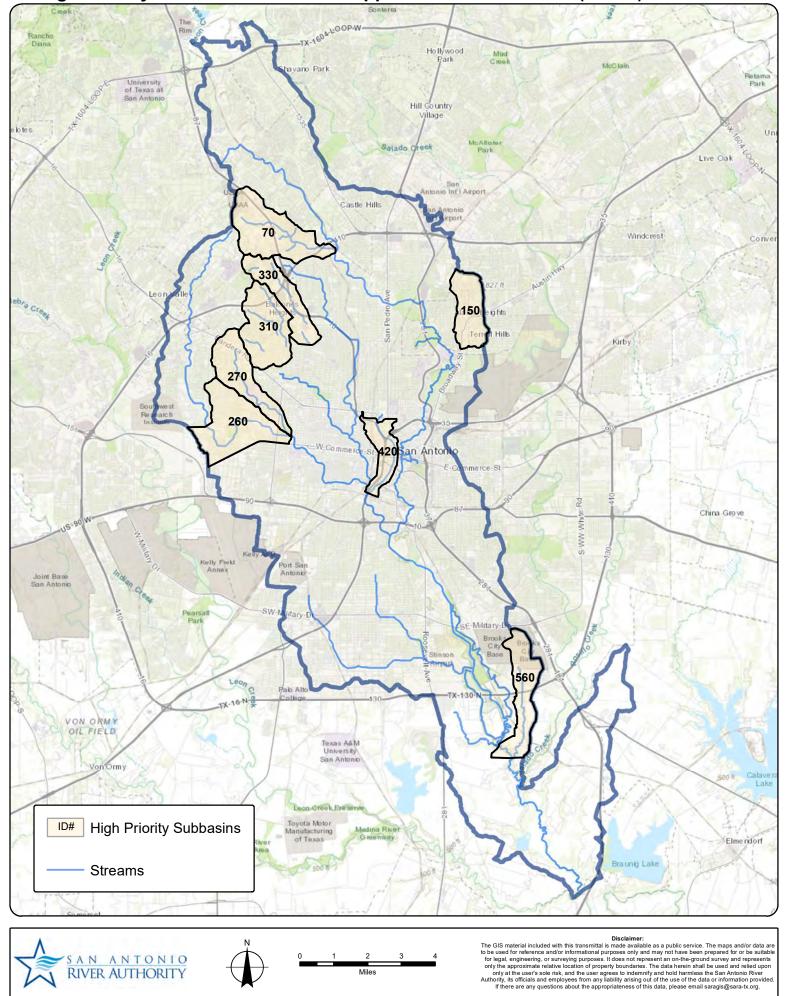
EXECUTIVE SUMMARY

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

JUNE 2021

ACKNOWLEDGEMENT OF FINANCIAL SUPPORT


PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY

This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement 19-90204 to Texas Commission on Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.

High Priority Subbasins within the Upper San Antonio River (USAR) Watershed

Produced by: eagarcia Date: 8/30/2019

Path: X:\3_Projects\014_green_stormwater_infrastructure\data\mxd\High_Priority_Subbasins_082019 - Copy.mxd

EXECUTIVE SUMMARY

The San Antonio River Authority (SARA) received US Environmental Protection Agency (EPA) funding through the Texas Commission on Environmental Quality (TCEQ) to create a Green Stormwater Infrastructure (GSI) Master Plan for portions of the Upper San Antonio River Watershed. During the master planning process, eight traditionally constructed sites on public lands or rights of way were identified and modeled for potential GSI Best Management Practices (BMP) implementation. The evaluation was constructed with a multidisciplinary team of engineers, landscape ecologists, planners, and economists.

An enhanced Cost Benefit Analysis (CBA) approach, also referred to as Triple Bottom Line-Cost Benefit Analysis (TBL-CBA), was then used to value the impacts associated with each site. TBL-CBA is an evidenced-based economic method that combines CBA and Life Cycle Cost Analysis (LCCA) across the Triple Bottom Line (TBL) to weigh the costs and benefits incurred to project stakeholders. It expands the traditional financial analysis (capital and operations and maintenance costs) to account for social and environmental performance as well. It aims to quantify, in monetary terms, as many of the costs and benefits of the project as possible, and converts them all into a present day dollar value representing the Net Present Value (NPV) of the project. The Triple Bottom Line-Net Present Value (TBL-NPV) of the sites is used to compare relative benefits and costs that accrue over their lifetime.

This study investigates the impacts of BMP installations over eight project sites on approximately two and a half acres (combined). The model used an expected construction duration of one year (starting in August 2022), with an operations duration of 50 years as the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. RCP 4.5 is a mild climate scenario where global action on climate change means that emissions peak around 2040, then decline. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars (2020 USD) in order to provide the TBL-NPV. Net present value is a metric used to measure all future cash flows of a project and discount them back to current dollars to allow for comparing different project sites designs on an equal footing.

SARA GSI MASTER PLAN - TBL-CBA REPORT | 4

Table 1. Amount of Pollutant Loadings Removed from Each Individual Project Site (1 - 8) | Over 50 Years

Pollutant	Units	Site 1 (Subbasin 70)	Site 2 (Subbasin 150)	Site 3 (Subbasin 260)	Site 4 (Subbasin 270)	Site 5 (Subbasin 310)	Site 6 (Subbasin 330)	Site 7 (Subbasin 420)	Site 8 (Subbasin 560)	
<i>E. Coli</i> Bacteria	#10^6 org	158,483,250	123,456,900	261,232,825	18,211,850	34,769,700	37,401,150	40,015,600	47,708,450	
Total Suspended Solids*	tons	744	39	107	11	12	26	10	100	
Total Nitrogen	lbs	313	961	2,517	209	228	295	221	652	
Total Phosphorus	lbs	199	230	574	37	43	55	39	134	

*Total Suspended Solids pollutant loadings were estimated by Autocase.

Table 2. Amount of Pollutant Loadings Removed from All Project Sites | Over 50 Years

Pollutant	Units	All Sites
E. Coli Bacteria	#10^6 org	721,279,725
Total Suspended Solids*	tons	1,047
Total Nitrogen	lbs	5,396
Total Phosphorus	lbs	1,311

*Total Suspended Solids pollutant loadings were estimated by Autocase.

The SARA GSI project team developed design scenarios for the proposed BMPs, while Lockwood, Andrews & Newnam (LAN) modeled land cover and water quality in both the base and design case scenarios. Autocase used the outcomes of their work as inputs for the TBL-CBA (Tables 1 & 2). By leveraging this data, as well as best in class peer reviewed literature and government reports, Autocase was able to analyze and compare the TBL benefits between the base case and design scenarios. A summary of these outcomes are shown in Table 3 below, all relative to the existing conditions at the site locations or 'base case' that assumes a managed turf land cover. Shifting away from managed landscape practices allows for co-benefits to accrue to the environment in the forms of improved water quality in the San Antonio River, reduced trash in local waters, along with greater

vegetative sequestration, and providing a more conducive habitat for pollinators. These environmental benefits are denoted by the water quality - pollutant loading reduction, trash, (carbon and air pollution) sequestration, and pollination line item results presented in Table 3. This shift towards GSI BMPs also allows for co-benefits to be realized to the society/community in the form of reduced flood risk, eco-literacy education opportunities for local schools, urban heat island reductions, as well as increases in both site recreation and in the inducement of water recreation via improved water quality along the San Antonio River. These social benefits are denoted by the flood risk, education, urban heat island, open space - recreation, and water quality - induced recreation line item results presented in Table 3.

SARA GSI MASTER PLAN - TBL-CBA REPORT | 5

Table 3. Results Summary of All Sites (1 - 8) | Net Present Value Over 50 Years Discounted at 3%

	Impact	Site 1 (Subbasin 70)	Site 2 (Subbasin 150)	Site 3 (Subbasin 260)	Site 4 (Subbasin 270)	Site 5 (Subbasin 310)	Site 6 (Subbasin 330)	Site 7 (Subbasin 420)	Site 8 (Subbasin 560)
_	Capital Costs	-\$318,400	-\$263,700	-\$754,800	-\$132,700	-\$155,000	-\$263,800	-\$181,900	-\$2,481,000
Financial	Operations & Maintenance	-\$450,800	-\$543,600	-\$1,498,000	-\$161,900	-\$194,300	-\$185,400	-\$240,600	-\$811,100
inal	Replacement Costs	-\$223,379	-\$190,590	-\$530,795	-\$57,342	-\$68,835	-\$68,624	-\$89,051	-\$284,379
	Residual Value	\$21,100	\$12,700	\$35,500	\$3,830	\$4,600	\$4,590	\$5,950	\$19,000
	Flood Risk	\$850	\$400	\$1,156	\$72	\$221	\$93	\$221	\$647
	Education	\$30,915	\$0	\$30,915	\$30,915	\$30,915	\$0	\$0	\$0
Social	Urban Heat Island	\$6,700	\$3,080	\$8,610	\$930	\$1,120	\$1,110	\$1,440	\$4,620
Ň	Open Space - Recreation	\$7,410	\$3,250	\$1,190	\$190	\$1,200	\$0	\$0	\$0
	Water Quality - Induced Recreation	\$2,126,544	\$1,668,031	\$2,731,634	\$295,244	\$354,365	\$353,296	\$458,359	\$767,218
	Air Pollution from Sequestration	\$880	\$400	\$1,130	\$120	\$150	\$150	\$190	\$600
ental	Carbon Emissions from Sequestration	\$71,100	\$32,700	\$91,300	\$9,860	\$11,800	\$11,800	\$15,300	\$49,000
nme	Trash	\$17,209	\$7,846	\$22,017	\$2,278	\$2,784	\$2,784	\$3,797	\$11,895
Enviro	Water Quality - Pollutant Loading Reduction	\$4,298	\$4,412	\$11,507	\$934	\$1,027	\$1,363	\$982	\$3,194
	Pollination	\$4,480	\$2,062	\$5,754	\$622	\$747	\$744	\$966	\$3,087
Financial NPV Social NPV Environmental NPV		-\$971,479	-\$985,190	-\$2,748,095	-\$348,112	-\$413,535	-\$513,234	-\$505,601	-\$3,557,479
		\$2,172,419	\$1,674,761	\$2,773,505	\$327,351	\$387,821	\$354,499	\$460,020	\$772,485
		\$97,967	\$47,420	\$131,708	\$13,814	\$16,508	\$16,841	\$21,235	\$67,776
		Ψ31,301		Ψ ΤΟ Τ, 700	Ψ 1 3,014	φ10,500	Ψ ΤΟ ,Ο Υ Τ	ΨΖΊ,ΖΟΟ	Ψ01,110
Triple Bottom Line-Net Present Value (TBL-NPV)		\$1,298,907	\$736,991	\$157,118	-\$6,947	-\$9,206	-\$141,895	-\$24,346	-\$2,717,218

Most project sites are expected to drive negative TBL-NPV impacts, while some return positive results. The largest negative driver of the TBL-NPV results stems from the financial impacts, where higher upfront capital costs and operations & maintenance (O&M) costs have severe implications on the triple bottom line results, as shown for Site 6 and 8 (Table 3) returning a negative

financial NPV of approximately \$0.51 million and \$3.56 million, respectively. Differences in the upfront capital costing estimates are due to the project location and whether it is between traffic lanes, requiring additional concrete reinforcement (lateral struts), and higher costs of construction due to other localized site provisions.

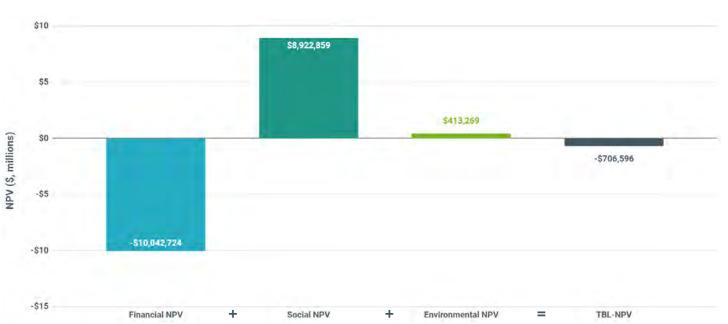


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For All Project Sites (1 - 8) | Net Present Value Over 50 Years Discounted at 3%


The installation of GSI BMPs is expected to improve local water quality by reducing the pollutant loadings present in stormwater runoff. Implementing GSI offers the opportunity for greater retention of rainfall from the surface areas that drain into project sites. Such BMP installations prevent trash from entering local waterways by more effectively trapping trash compared to managed turf land covers and represents a benefit to the community. This improvement in local water quality is also expected to induce recreation along the San Antonio River, which is the most significant driver of positive TBL-NPV results. This can be clearly seen for Sites 1 and 3 (Table 3), where trash and recreation values are in the top 5 largest drivers of growth; valued at \$17,209 and approximately \$2.13 million, respectively, for Site 1 and \$22,017 and approximately \$2.73 million, respectively, for Site 3.

The combined financial NPV of the project sites returns approximately \$10 million worth of costs incurred for all of the BMP site installations (Figure 1). This value takes into account the full life cycle costs of the landcover features assumed in both the base and design cases, and is differenced against any operations and maintenance costs estimated for regularly managing turf in the base case.

The social NPV is the largest impact driver in the design case scenario, with GSI BMP designs providing over \$8.92 million more in social benefits when compared to conditions in the base case (Figure 1). The GSI Master Plan design case scenario drives value to the local community in terms of the aforementioned induced recreation along the San Antonio River, eco-literacy education opportunities for local schools, increased recreation on or around the GSI BMPs, and reduced urban heat island and flood risk impacts.

Figure 2. Comparison of the Expected NPV of each Category of Results For All Project Sites (1 - 8) | Net Present Value Over 50 Years Discounted at 3%

NPV (\$, millions)

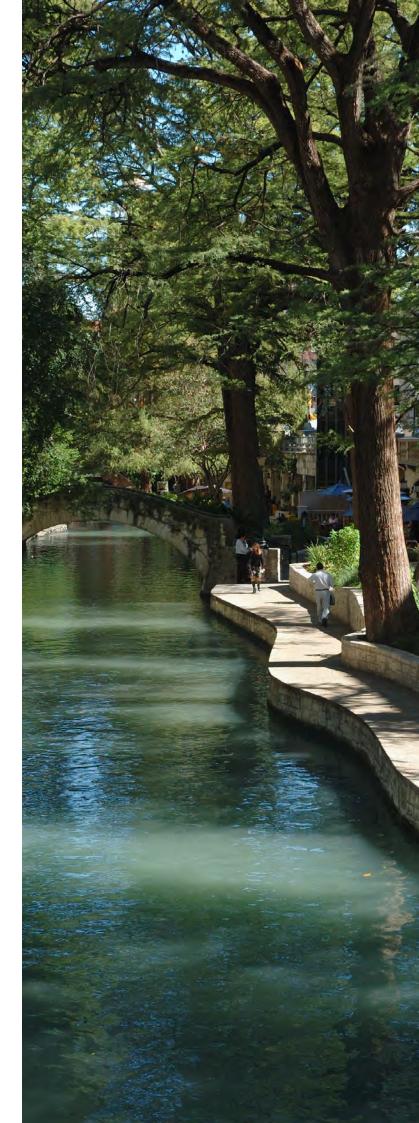
The design case with GSI BMP implementations also produces a positive environmental NPV that is approximately \$0.41 million more than that under the existing managed turf conditions in the base case (Figure 1). These improvements stem from the improved water quality (via reduced pollutant loads), reduced trash in waterways, greater sequestration of greenhouse gases, and other air pollutants from higher vegetative growth, along with benefits accrued to a switch in landscaping practices allowing for greater pollination potential.

When viewed across an aggregated lens of all three TBL categories (financial, social, and environmental impacts) the GSI Master Plan results in a negative TBL-NPV of \$0.71 million across all eight project sites identified in the TBL-CBA (Figure 1). When analyzed categorically, the three highest generators of benefits (in order) are through the increased inducement of recreation via water quality improvements, vegetative sequestration of carbon, and eco-literacy opportunities for local schools (Figure 2). The highest generators of costs are from the LCCA related line items incurred to the GSI BMPs' installations: capital expenditures, operations & maintenance, and replacement costs (Figure 2).

These results show that, on a per site basis, some are able to generate positive results, while others do not. Despite the financial expenditures incurred upfront, when viewed holistically across a TBL framework, the investments generate a suite of co-benefits to social and environmental stakeholders that are able to offset much of the lifecycle costs accrued for installing BMPs. For more detailed information on the methodologies and granular inputs used for this report, please visit this <u>link</u>.

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 1 (SUBBASIN 70) -

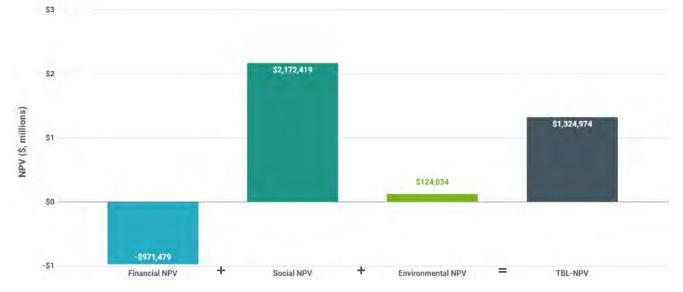

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

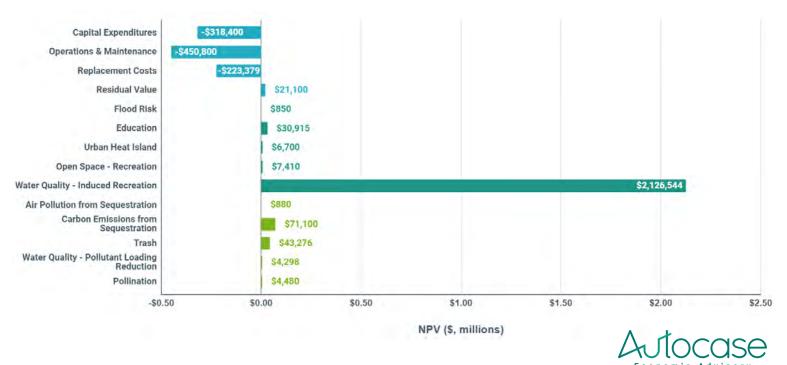
MAY 2021

Table 1. Results for Site 1 (Subbasin 70) | Net Present Value Over 50 Years Discounted at 3%


	Impact	Lifetime NPV
Financial	Capital Costs	-\$318,400
	Operations & Maintenance	-\$450,800
	Replacement Costs	-\$223,379
	Residual Value	\$21,100
	Flood Risk	\$850
	Education	\$30,915
Social	Urban Heat Island	\$6,700
S	Open Space - Recreation	\$7,410
	Water Quality - Induced Recreation	\$2,126,544
Environmental	Air Pollution from Sequestration	\$880
	Carbon Emissions from Sequestration	\$71,100
	Trash	\$43,276
	Water Quality - Pollutant Loading Reduction	\$4,298
	Pollination	\$4,480
	Financial NPV	-\$971,479
	Social NPV	\$2,172,419
	Environmental NPV	\$124,034
	Triple Bottom Line-Net Present Value (TBL-NPV)	\$1,324,974

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 1 (Subbasin 70) | Net Present Value Over 50 Years Discounted at 3%

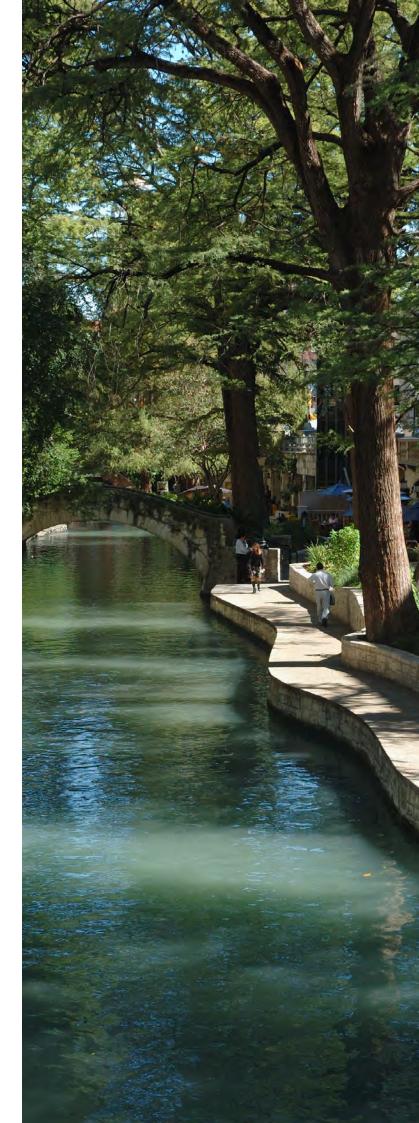
The implementation of the BMPs is expected to drive a positive TBL-NPV when accounting for the financial, social and environmental impacts for Site 1 (Subbasin 70). The total TBL-NPV is \$1,324,974 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The social NPV is the biggest driver of the positive results, namely through induced recreation via improved water quality estimated at \$2,172,419 (Figure 2). The environmental NPV is the next largest generator of benefits for Site 1 (Subbasin 70) at \$124,034, with the majority of the impact category stemming from vegetation sequestration (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 1 (Subbasin 70) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 2 (SUBBASIN 150) -

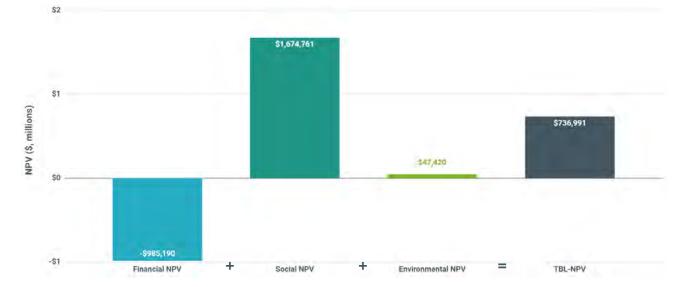

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

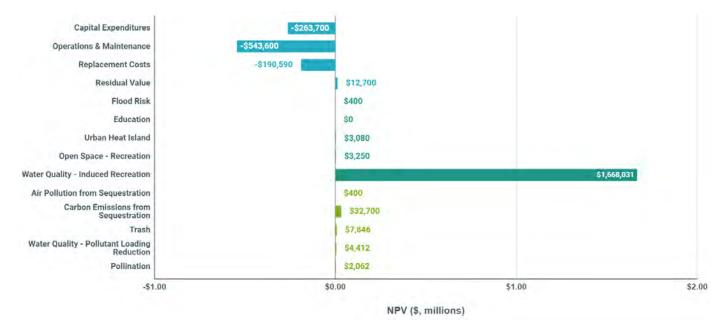
JUNE 2021

Table 1. Results for Site 2 (Subbasin 150) | Net Present Value Over 50 Years Discounted at 3%


	Impact	Lifetime NPV
Financial	Capital Costs	-\$263,700
	Operations & Maintenance	-\$543,600
	Replacement Costs	-\$190,590
	Residual Value	\$12,700
	Flood Risk	\$400
	Education	\$0
Social	Urban Heat Island	\$3,080
S	Open Space - Recreation	\$3,250
	Water Quality - Induced Recreation	\$1,668,031
Environmental	Air Pollution from Sequestration	\$400
	Carbon Emissions from Sequestration	\$32,700
	Trash	\$7,846
	Water Quality - Pollutant Loading Reduction	\$4,412
	Pollination	\$2,062
	Financial NPV	-\$985,190
	Social NPV	\$1,674,761
	Environmental NPV	\$47,420
	Triple Bottom Line-Net Present Value (TBL-NPV)	\$736,991

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 2 (Subbasin 150) | Net Present Value Over 50 Years Discounted at 3%

The implementation of the BMPs is expected to drive a positive TBL-NPV when accounting for the financial, social and environmental impacts for Site 2 (Subbasin 150). The total TBL-NPV is \$736,991 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The social NPV is the biggest driver of the positive results, namely through induced recreation via improved water quality estimated at \$1,674,761 (Figure 2). The environmental NPV is the next largest generator of benefits for Site 2 (Subbasin 150) at \$47,420, with the majority of the impact category stemming from vegetation sequestration (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 2 (Subbasin 150) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 3 (SUBBASIN 260) -

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

MAY 2021

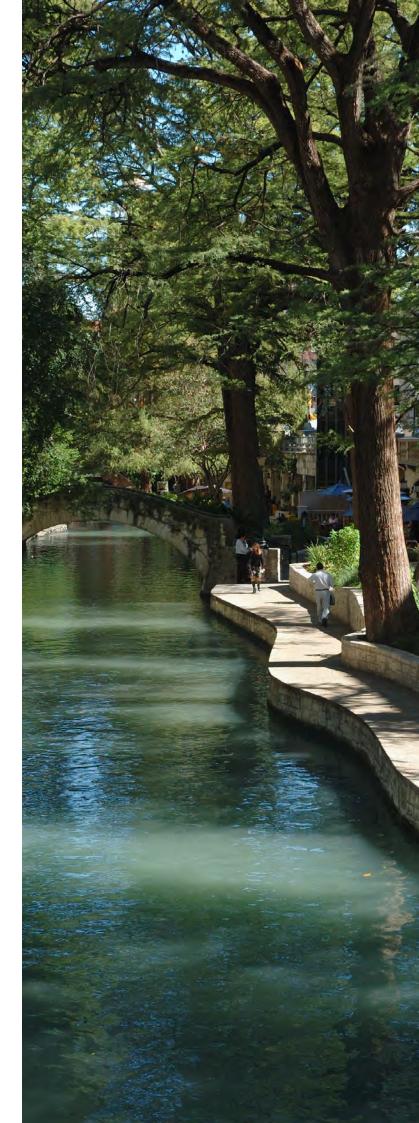
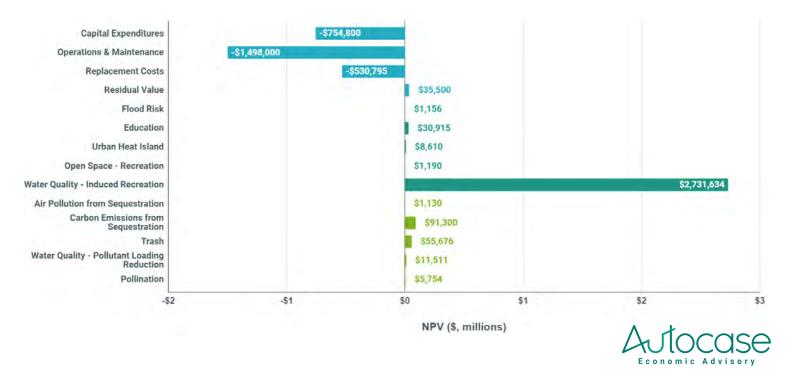


Table 1. Results for Site 3 (Subbasin 260) | Net Present Value Over 50 Years Discounted at 3%


	Impact	Lifetime NPV
	Capital Costs	-\$754,800
Financial	Operations & Maintenance	-\$1,498,000
	Replacement Costs	-\$530,795
	Residual Value	\$35,500
	Flood Risk	\$1,156
_	Education	\$30,915
Social	Urban Heat Island	\$8,610
0)	Open Space - Recreation	\$1,190
	Water Quality - Induced Recreation	\$2,731,634
	Air Pollution from Sequestration	\$1,130
Environmental	Carbon Emissions from Sequestration	\$91,300
onm	Trash	\$55,676
Envir	Water Quality - Pollutant Loading Reduction	\$11,511
	Pollination	\$5,754
	Financial NPV	-\$2,748,095
	Social NPV	\$2,773,505
	Environmental NPV	\$165,371
	Triple Bottom Line-Net Present Value (TBL-NPV)	\$190,781

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 3 (Subbasin 260) | Net Present Value Over 50 Years Discounted at 3%

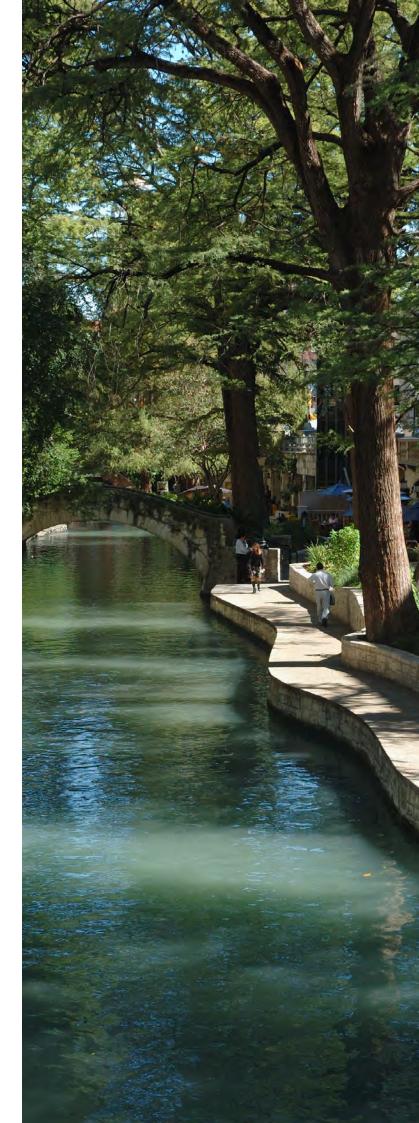
The implementation of the BMPs is expected to drive a positive TBL-NPV when accounting for the financial, social and environmental impacts for Site 3 (Subbasin 260). The total TBL-NPV is \$190,781 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The social NPV is the biggest driver of the positive results, namely through induced recreation via improved water quality estimated at \$2,773,505 (Figure 2). The environmental NPV is the next largest generator of benefits for Site 3 (Subbasin 260) at \$165,371, with the majority of the impact category stemming from vegetation sequestration (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 3 (Subbasin 260) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 4 (SUBBASIN 270) -

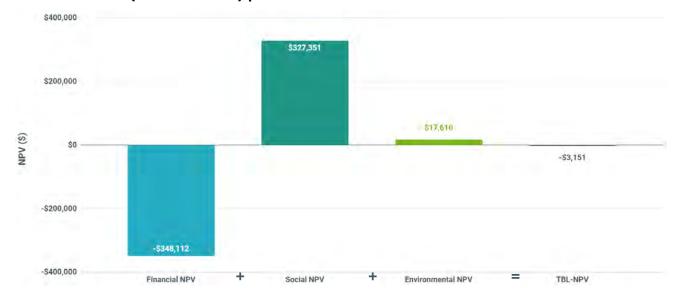

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

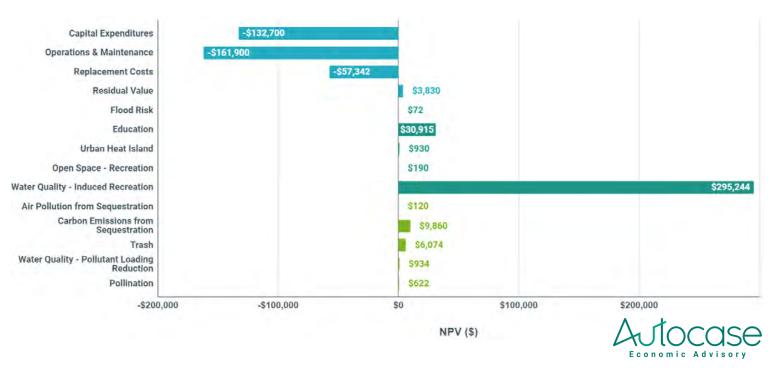
MAY 2021

Table 1. Results for Site 4 (Subbasin 270) | Net Present Value Over 50 Years Discounted at 3%


	Impact	Lifetime NPV
Financial	Capital Costs	-\$132,700
	Operations & Maintenance	-\$161,900
	Replacement Costs	-\$57,342
	Residual Value	\$3,830
	Flood Risk	\$72
	Education	\$30,915
Social	Urban Heat Island	\$930
S	Open Space - Recreation	\$190
	Water Quality - Induced Recreation	\$295,244
Environmental	Air Pollution from Sequestration	\$120
	Carbon Emissions from Sequestration	\$9,860
	Trash	\$6,074
	Water Quality - Pollutant Loading Reduction	\$934
	Pollination	\$622
	Financial NPV	-\$348,112
	Social NPV	\$327,351
	Environmental NPV	\$17,610
	Triple Bottom Line-Net Present Value (TBL-NPV)	-\$3,151

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 4 (Subbasin 270) | Net Present Value Over 50 Years Discounted at 3%

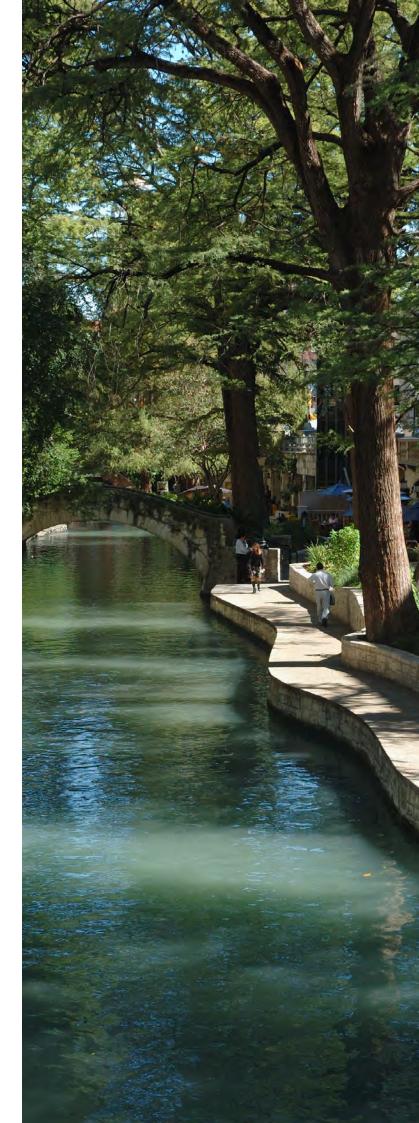
The implementation of the BMPs is expected to drive a negative TBL-NPV when accounting for the financial, social and environmental impacts for Site 4 (Subbasin 270). The total TBL-NPV is -\$3,151 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The financial NPV is the biggest driver of the negative results, namely through increased capital, operations and maintenance, and replacements costs estimated at approximately \$348,112. The social NPV is the largest generator of benefits for Site 4 (Subbasin 270) at \$327,351, with the majority of the impact category stemming from induced recreation via improved water quality (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 4 (Subbasin 270) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 5 (SUBBASIN 310) -


REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

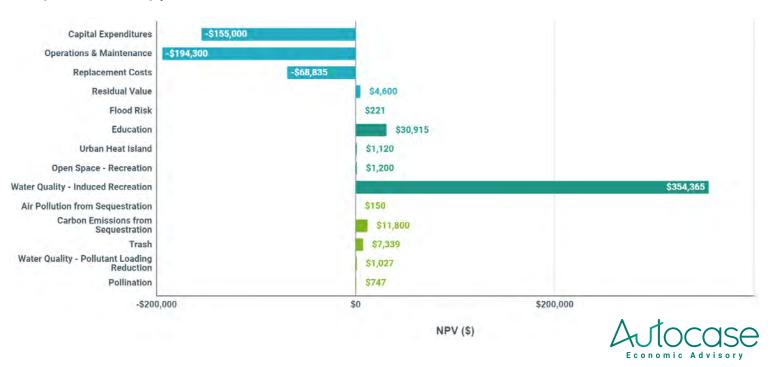
MAY 2021

Table 1. Results for Site 5 (Subbasin 310) | Net Present Value Over 50 Years Discounted at 3%

	Impact	Lifetime NPV
Financial	Capital Costs	-\$155,000
	Operations & Maintenance	-\$194,300
	Replacement Costs	-\$68,835
	Residual Value	\$4,600
	Flood Risk	\$221
	Education	\$30,915
Social	Urban Heat Island	\$1,120
S	Open Space - Recreation	\$1,200
	Water Quality - Induced Recreation	\$354,365
Environmental	Air Pollution from Sequestration	\$150
	Carbon Emissions from Sequestration	\$11,800
	Trash	\$7,339
	Water Quality - Pollutant Loading Reduction	\$1,027
	Pollination	\$747
	Financial NPV	-\$413,535
	Social NPV	\$387,821
	Environmental NPV	\$21,063
	Triple Bottom Line-Net Present Value (TBL-NPV)	-\$4,651

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 5 (Subbasin 310) | Net Present Value Over 50 Years Discounted at 3%

The implementation of the BMPs is expected to drive a negative TBL-NPV when accounting for the financial, social and environmental impacts for Site 5 (Subbasin 310). The total TBL-NPV is -\$4,651 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The financial NPV is the biggest driver of the negative results, namely through increased capital, operations and maintenance, and replacements costs estimated at approximately \$413,535. The social NPV is the largest generator of benefits for Site 5 (Subbasin 310) at \$387,821, with the majority of the impact category stemming from induced recreation via improved water quality (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 5 (Subbasin 310) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 6 (SUBBASIN 330) -

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

JUNE 2021

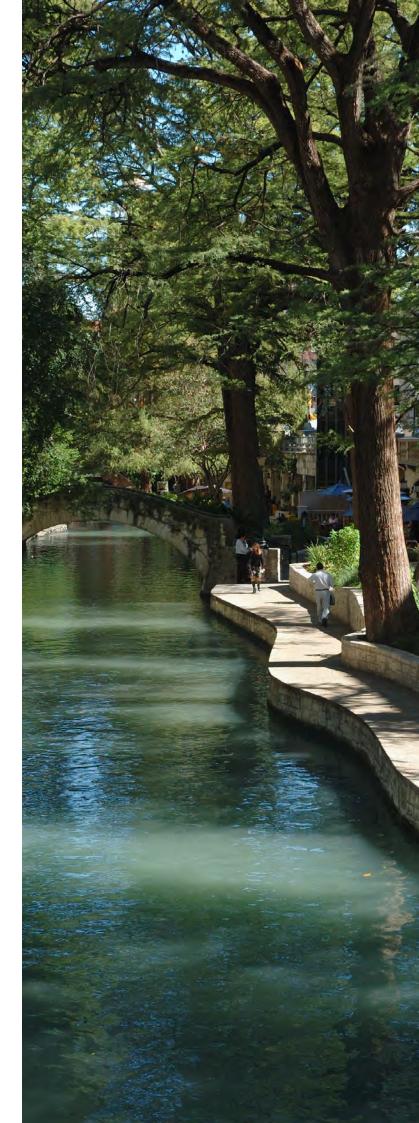


Table 1. Results for Site 6 (Subbasin 330) | Net Present Value Over 50 Years Discounted at 3%

	Impact	Lifetime NPV
	Capital Costs	-\$263,800
Financial	Operations & Maintenance	-\$185,400
	Replacement Costs	-\$68,624
	Residual Value	\$4,590
	Flood Risk	\$93
_	Education	\$0
Social	Urban Heat Island	\$1,110
S	Open Space - Recreation	\$0
	Water Quality - Induced Recreation	\$353,296
	Air Pollution from Sequestration	\$150
ental	Carbon Emissions from Sequestration	\$11,800
onm	Trash	\$2,784
Environmenta	Water Quality - Pollutant Loading Reduction	\$1,363
	Pollination	\$744
	Financial NPV	-\$513,234
	Social NPV	\$354,499
	Environmental NPV	\$16,841
	Triple Bottom Line-Net Present Value (TBL-NPV)	-\$141,895

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.

Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 6 (Subbasin 330) | Net Present Value Over 50 Years Discounted at 3%

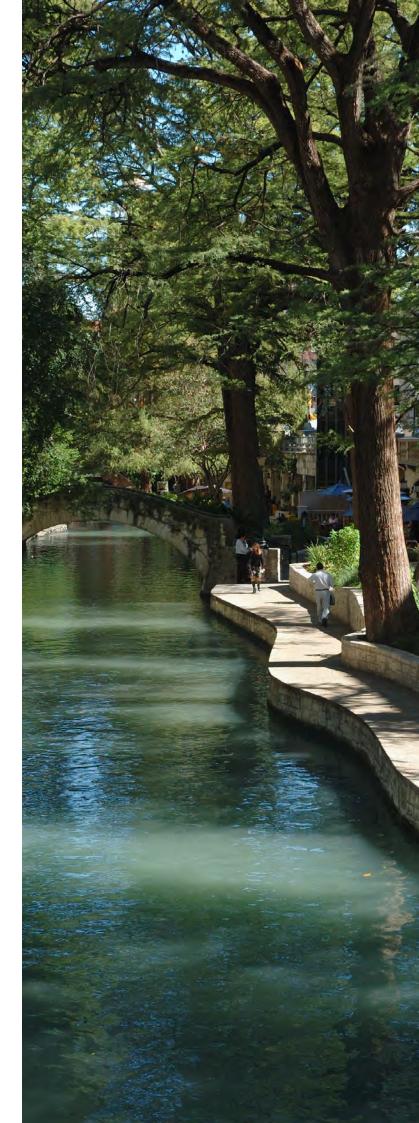
The implementation of the BMPs is expected to drive a negative TBL-NPV when accounting for the financial, social and environmental impacts for Site 6 (Subbasin 330). The total TBL-NPV is -\$141,895 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The financial NPV is the biggest driver of the negative results, namely through increased capital, operations and maintenance, and replacements costs estimated at approximately \$513,234. The social NPV is the largest generator of benefits for Site 6 (Subbasin 330) at \$354,499, with the majority of the impact category stemming from induced recreation via improved water quality (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this link.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 6 (Subbasin 330) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 7 (SUBBASIN 420) -


REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

MAY 2021

Table 1. Results for Site 7 (Subbasin 420) | Net Present Value Over 50 Years Discounted at 3%

	Impact	Lifetime NPV
Financial	Capital Costs	-\$181,900
	Operations & Maintenance	-\$240,600
	Replacement Costs	-\$89,051
	Residual Value	\$5,950
	Flood Risk	\$221
3	Education	\$0
Social	Urban Heat Island	\$1,440
S	Open Space - Recreation	\$0
	Water Quality - Induced Recreation	\$458,359
Environmental	Air Pollution from Sequestration	\$190
	Carbon Emissions from Sequestration	\$15,300
	Trash	\$9,366
Envir	Water Quality - Pollutant Loading Reduction	\$983
	Pollination	\$966
	Financial NPV	-\$505,601
	Social NPV	\$460,020
	Environmental NPV	\$26,805
	Triple Bottom Line-Net Present Value (TBL-NPV)	-\$18,776

Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.

Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 7 (Subbasin 420) | Net Present Value Over 50 Years Discounted at 3%

The implementation of the BMPs is expected to drive a negative TBL-NPV when accounting for the financial, social and environmental impacts for Site 7 (Subbasin 420). The total TBL-NPV is -\$18,776 when implementing the GSI design over the baseline managed turf conditions (Figure 1). The financial NPV is the biggest driver of the negative results, namely through increased capital, operations and maintenance, and replacements costs estimated at approximately \$505,601. The social NPV is the largest generator of benefits for Site 7 (Subbasin 420) at \$460,020, with the majority of the impact category stemming from induced recreation via improved water quality (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 7 (Subbasin 420) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

SITE 8 (SUBBASIN 560) -

REPORT OVERVIEW

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

MAY 2021

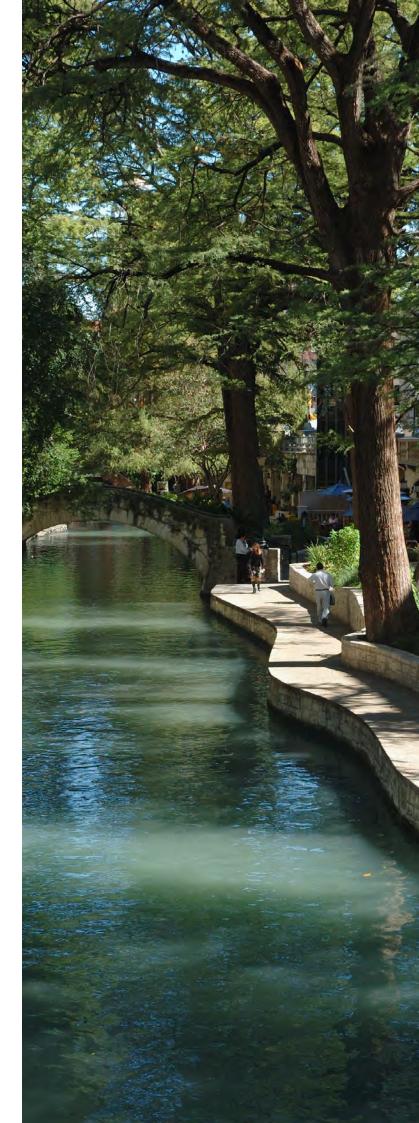
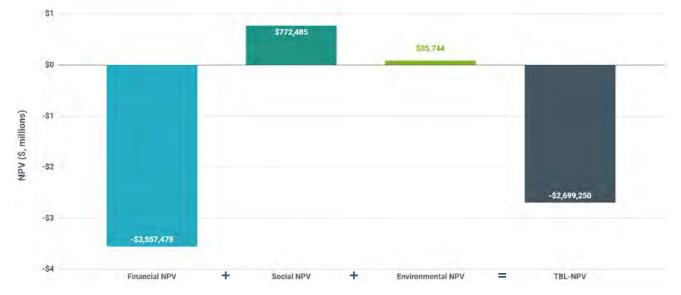


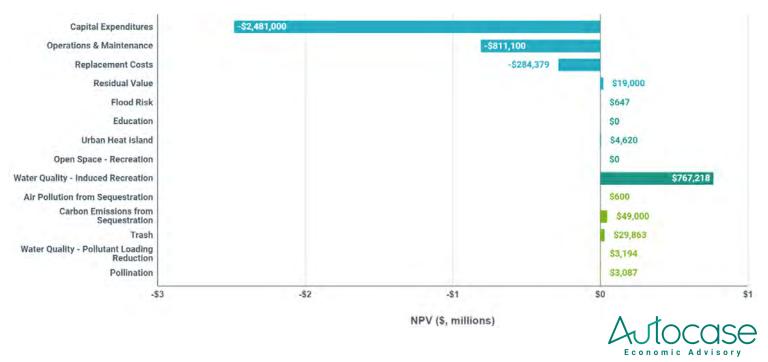
Table 1. Results for Site 8 (Subbasin 560) | Net Present Value Over 50 Years Discounted at 3%

	Impact	Lifetime NPV
Financial	Capital Costs	-\$2,481,000
	Operations & Maintenance	-\$811,100
	Replacement Costs	-\$284,379
	Residual Value	\$19,000
Social	Flood Risk	\$647
	Education	\$0
	Urban Heat Island	\$4,620
	Open Space - Recreation	\$0
	Water Quality - Induced Recreation	\$767,218
Environmental	Air Pollution from Sequestration	\$600
	Carbon Emissions from Sequestration	\$49,000
	Trash	\$29,863
	Water Quality - Pollutant Loading Reduction	\$3,194
	Pollination	\$3,087
	Financial NPV	-\$3,557,479
	Social NPV	\$772,485
	Environmental NPV	\$85,744


Triple Bottom Line-Net Present Value (TBL-NPV)

This report analyzes the SARA Green Stormwater Infrastructure (GSI) Master Plan that comprises of a redevelopment of 8 sites with GSI Best Management Practices (BMPs). The site redevelopments are expected to have a construction duration of 1 year, along with an operations duration of 50 years, dictating the timeline of the analysis. The modeling included best-available regional climate change projections affecting rainfall and temperature data using Representative Carbon Pathway (RCP) 4.5. Using a discount rate of 3%, all the costs and benefits that accrue over the life of the project were discounted back to current dollars in order to provide the Triple Bottom Line-Net Present Value (TBL-NPV). Net Present Value (NPV) is used to measure all future cash flows of a project and discount them back to current dollars to allow for comparison of all site redevelopments on an equal footing.

-\$2,699,250


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For Site 8 (Subbasin 560) | Net Present Value Over 50 Years Discounted at 3%

The implementation of the BMPs is expected to drive a negative TBL-NPV when accounting for the financial, social and environmental impacts for Site 8 (Subbasin 560). The total TBL-NPV is -\$2.70 million when implementing the GSI design over the baseline managed turf conditions (Figure 1). The financial NPV is the biggest driver of the negative results, namely through increased capital, operations and maintenance, and replacements costs estimated at approximately \$3.56 million. The social NPV is the largest generator of benefits for Site 8 (Subbasin 560) at \$772,485, with the majority of the impact category stemming from induced recreation via improved water quality (Figure 2).

A technical appendix containing the site inputs and methodologies used in the SARA GSI Triple Bottom Line-Cost Benefit Analysis (TBL-CBA) can be found at this <u>link</u>.

Figure 2. Comparison of the Expected NPV of each Category of Results For Site 8 (Subbasin 560) | Net Present Value Over 50 Years Discounted at 3%

THE SAN ANTONIO RIVER AUTHORITY GREEN STORMWATER INFRASTRUCTURE MASTER PLAN

TECHNICAL APPENDIX

REPORT AUTHOR AUTOCASE ECONOMIC ADVISORY (BY IMPACT INFRASTRUCTURE, INC.)

PREPARED FOR SAN ANTONIO RIVER AUTHORITY (SARA)

JUNE 2021

Table of Contents

About	3
Prepared By:	3
Prepared For:	3
Project Parameters	4
Methodologies	4
Financial Impacts	5
Life Cycle Cost Analysis (LCCA)	5
Capital Expenditures	5
Operations and Maintenance Costs	5
Replacement Costs	5
Residual Value	6
Social Impacts	7
Flood Risk	7
Urban Heat Island Effect	9
Open Space - Recreation	13
Water Quality - Induced Recreation	15
Education	17
Public Signage	18
Environmental Impacts	19
Carbon and Air Pollution Sequestration	19
Water Quality - Pollutant Loading Reduction	22
Trash	24
Pollination	25
Detailed Results Tables & Charts	26
Appendix	29
Inputs from SARA	29
Autocase BMP Mapping	29
Site BMP Area	29
BMP Pollutant Loading Reduction Estimates (per Year)	31
Financial Costs of Land Covers	32
Inputs from Autocase	
General Inputs	33
Project Location Characteristics	33
Advanced Inputs	34

About

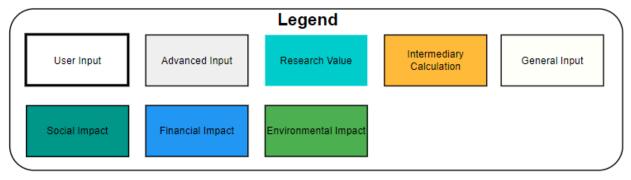
The San Antonio River Authority (SARA) received US Environmental Protection Agency (EPA) funding through the Texas Commission on Environmental Quality (TCEQ) to create a Green Stormwater Infrastructure (GSI) Master Plan for portions of the Upper San Antonio River Watershed. The subject of this assessment is a suite of eight sites, currently characterized as turf-covered, that were modeled for potential GSI Best Management Practices (BMPs) implementation. The evaluation was constructed with a multidisciplinary team of engineers, landscape ecologists, planners, and economists.

An enhanced Cost Benefit Analysis (CBA) approach, also referred to as Triple Bottom Line-Cost Benefit Analysis (TBL-CBA), was used to value the impacts associated with each site. TBL-CBA is an evidenced-based economic method that combines CBA and Life Cycle Cost Analysis (LCCA) across the Triple Bottom Line (TBL) to weigh the costs and benefits incurred to project stakeholders. It expands the traditional financial analysis (capital and operations and maintenance costs) to account for social and environmental performance as well. It aims to quantify, in monetary terms, as many of the costs and benefits of the project as possible and convert them all into a present day dollar value representing the Net Present Value (NPV) of the project. The Triple Bottom Line-Net Present Value (TBL-NPV) of the sites is used to compare relative benefits and costs that accrue over their lifetime.

The underlying modelling to value the numerous impacts of the proposed Green Stormwater Infrastructure is complex. As such, an Executive Summary, individual report summaries and a Technical Appendix are available to readers. This Technical Appendix provides interested readers with a comprehensive and transparent understanding of the detailed methodologies, data and sources employed in this analysis. A more detailed set of inputs are also presented, along with structure and logic diagrams to illustrate the modelling concepts used in this analysis. The Executive Summary aims to cater to a general reader's understanding by presenting high level conceptual overviews of how each impact is calculated, along with their lifetime NPV.

Prepared By:

Prepared For:


Project Parameters

SARA supplied the modeled hydrological simulation results to Autocase, assumed a 50-year BMP operational life expectancy, and requested a financial assessment period from 2022 to 2072 assuming a one-year BMP site installation period beginning in August 2022. Annual cash flows (benefits and costs) are accounted for throughout the entire study period. The modeling included best-available regional climate change projections affecting rainfall and temperature data using the Representative Carbon Pathway (RCP) 4.5. RCP 4.5 is a mild climate scenario where global action on climate change means that emissions peak around 2040, then begin to decline thereafter. To discount the future cash flows into today's dollars, a real discount rate of 3% was selected for the analysis and presented the economic impacts in terms of the NPV. By utilizing the real discount rate across the economic analysis, annual cash flows are not required to be inflated as this discount rate is net of expected annual inflation.

Methodologies

This section briefly describes the methods used to monetize the potential impacts of GSI BMP installation on the identified sites. Financial impacts reflect the changes accrued to the property owner in the form of upfront, operational and replacement costs, as well as any remaining residual value of the asset at the end of the project duration. Social impacts are derived from the BMP land cover types, which affect both the ability to retain stormwater and in turn mitigate flood risk, along with urban heat island impacts and increased induced recreation along the San Antonio River via improved water quality. Environmental impacts stem from the positive externalities attributed to the BMP installation. These benefits include increased sequestration of both carbon emissions and other broader air pollutants, improvements in the water quality from reduced pollutant loads, as well as any pollination accrued from having a more diverse and potentially higher growth vegetation on site. A link to the summary findings of that analysis can be found here (Autocase, 2021).

The method descriptions are accompanied by a Structure and Logic (S&L) diagram to visually depict the underlying calculations of the economic models. The legend below outlines the various impacts and input types included in such diagrams.

Financial Impacts

Life Cycle Cost Analysis (LCCA)

The installation of BMPs allows for greater inflow and infiltration of rainfall and may avoid the need for costly gray infrastructure replacements and investments to San Antonio's separate storm sewer system due to the reduction of stormwater conveyed during large storm events. Although these avoided investments are important factors to consider, due to data limitations in cost estimations this proposed efficiency remains a purely qualitative component of the analysis. Other than the managed turf design, the LCCA components of this analysis do not consider financial expenditures for any type of alternative GSI mitigation strategy in the base case relative to the BMP design.

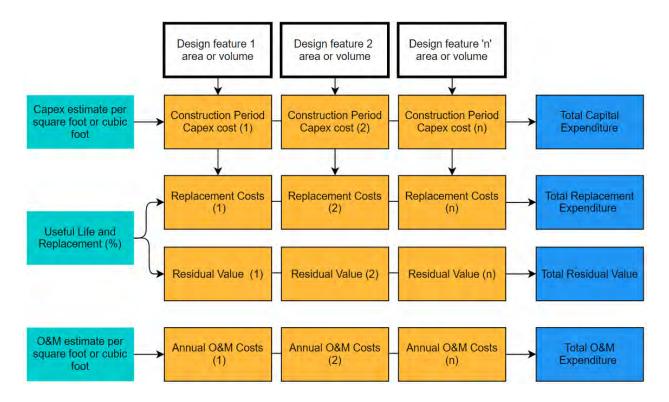
Capital Expenditures

Capital expenditure (Capex) is the upfront cost of the project. Capital costs were estimated for each BMP by SARA. The capital expenditures were assumed to be evenly distributed across the construction period.

Operations and Maintenance Costs

Operations and maintenance (O&M) costs are those that occur yearly throughout the life of the project. Values are discounted to produce a present value of the costs.

Regularly maintaining BMPs ensures their desired function is achieved, and overall is critical to the efficiency of their water infiltration capacity from stormwater runoff. O&M costs for the design BMP installations were estimated and provided by SARA. This analysis assumes any managed turf in the base case, is converted to unmanaged practices in the design case, offering marginal cost savings from regularly maintaining the landscape through mowing and herbicide applications. The avoided O&M costs (from a switch of managed turf to unmanaged BMPs) were estimated using Autocase's cost database for landscaping site features.


Replacement Costs

Elements of greening projects need to be replaced at some point, and feature types have different lifespans, as well as different costs of replacement at the end of their operating lives. Autocase quantifies these costs as the lifetime "Replacement Costs" of each feature. Replacement costs for features are estimated whenever the expected operating duration of the infrastructure exceeds the lifespan of a feature. Replacement costs are then combined with the expected lifespans of each feature type and the operating life of the project to quantify the expected total replacement costs. Replacement costs for the design BMPs were estimated by SARA.

Residual Value

At the end of the project some of the features may still have value. This value is captured as residual value using linear depreciation over the lifespan of the feature by Autocase. The remaining value of the features at the end of the projects' timelines is considered an asset and yields a positive financial value.

References

- The Capex, O&M costs, and replacement costs/schedules for the BMP areas were provided by SARA.
- Cheng, H., Hu, Y., & Reinhard, M. (2014). Environmental and health impacts of artificial turf: a review. Environmental science & technology, 48(4), 2114-2129. Retrieved from: https://core.ac.uk/download/pdf/71730025.pdf.
- Hall, C. R., Sorochan, J. C., & Samples, T. (2005). Costs of managing a bermudagrass football field in Tennessee. Univ. Tenn. Ag. Ext. Factsheet, 651. Retrieved from: <u>https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1019&context=utk_agexcomhor</u> <u>t</u>.
- San Antonio River Authority (SARA). (2019). San Antonio River Basin Low Impact Development Technical Design Guidance Manual. Second Edition. Retrieved from: <u>https://www.sariverauthority.org/sites/default/files/2019-08/SARB%20LID%20Technical</u> %20Design%20Manual%202nd%20Edition.pdf.

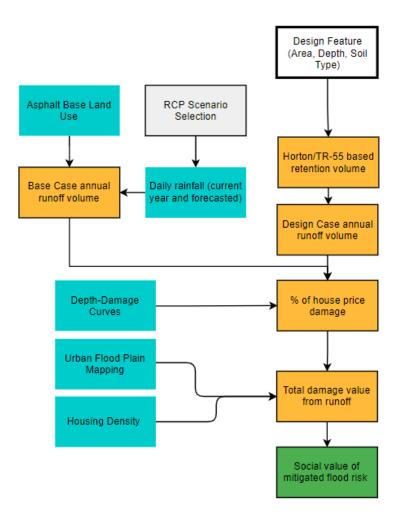
- Uhlman, B., Diwan, M., Dobson, M., Sferrazza, R., & Songer, P. (2010). Synthetic Turf, Eco-Efficiency Analysis Final Report. Florem park NJ, BASF Corporation. NSF Protocol P, 352. Retrieved from: <u>https://d2evkimvhatqav.cloudfront.net/documents/Synthetic_Turf_EEA_Study_Verification_Final.pdf</u>.
- U.S. Environmental Protection Agency. (1995). Appendix 8. Examples of Natural Landscaping Installation and Maintenance Cost. Retrieved from: <u>https://archive.epa.gov/greenacres/web/pdf/appendix8.pdf</u>.
- U.S. Environmental Protection Agency. (2019). July 2019 Report: Tire Crumb Rubber Characterization: Synthetic Turf Field Recycled Tire Crumb Rubber Research Under the Federal Research Action Plan - Final Report Part 1 - Volume 2. Retrieved from: https://www.epa.gov/sites/production/files/2019-08/documents/synthetic_turf_field_re cycled_tire_crumb_rubber_research_under_the_federal_research_action_plan_final_repor t_part_1_volume_2.pdf.

Social Impacts

Flood Risk

Increased acres of vegetation, such as bioretention features and vegetated detention basins, can positively influence the community through the reduction of localized flood risk. Using GSI BMP features for stormwater management can reduce the surface runoff volume that impacts residential properties located in the city's flood plain.

The flood risk model values the benefits of reduced runoff water in terms of avoided property damage. As a first step, the floodplain is assessed as the percentage of the City area that would be impacted during a flood storm. Then, the level of runoff is calculated in a flood situation. The level of runoff gives an indication to the volume of water that is expected to impact neighboring areas in a storm event.


Feature specific inputs such as storage volume, ponding depth, depth of coverage of materials, empty space, infiltration rate, and reduction factor (as applicable per feature) are responsible for calculating runoff depth. The flood risk model divides 24 hours of daily rainfall into 30-minute brackets. The model also accounts for changes in future precipitation due to climate change by using RCP 4.5 rainfall projections.

Depending on the green infrastructure investment, infiltration over the project period is calculated using the minimum and maximum infiltration rates along with the corresponding reduction factor using Horton's equation. The infiltration reduction factor is the rate at which the level of infiltration shifts from maximum to minimum within 24 hours of rainfall. Stormwater retention capacity in Horton's model also incorporates ponding depths for relevant features. Ponding depth can be defined as the conical dip in the LID surface that has the capacity to

accumulate and store stormwater. Ponding depth and the type of soil affect the feature's capacity to absorb rainwater and reduce levels of surface runoff.

Given the above calculations of runoff, the model calculates a monetary valuation of reduced flooding across the City at a high-level. The value at risk within the floodplain zone is dependent on housing density, typical property value in the area, and the City's total flood plain (as a percentage).

References

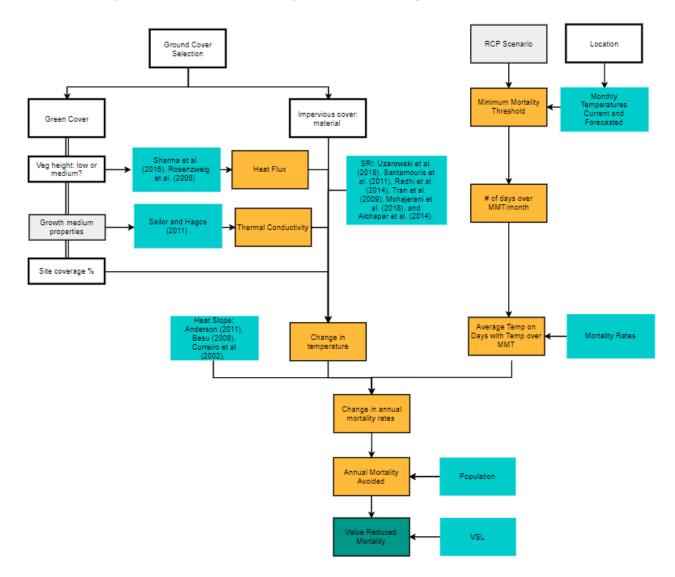
- Canadian Centre for Climate Modelling and Analysis (CCCma). (2017). CanESM2 model: The Fourth Generation Global Climate Model. Retrieved from: <u>http://climate-modelling.canada.ca/data/data.shtml</u>.
- Hanson, L. S. & R. Vogel. (2008). The Probability Distribution of Daily Rainfall in the United States. Retrieved from <u>http://engineering.tufts.edu/cee/people/vogel/documents/DailyRainfall.pdf</u>.

- Nowak, D. J. & E. J. Greenfield. (2012). Tree and Impervious Cover Change in U.S. Cities. Retrieved from <u>http://www.itreetools.org/Canopy/resources/Tree_and_Impervious_Cover_change_in_US_Cities_Nowak_Greenfield.pdf</u>.
- Pielke, Jr., R.A., M.W. Downton, & J.Z. Barnard Miller. (2002). Flood Damage in the United States, 1926-2000: A Reanalysis of National Weather Service Estimates. Retrieved from <u>http://www.flooddamagedata.org/flooddamagedata.pdf</u>.
- Schueler, T. R. (1987). Controlling urban runoff: A practical manual for planning and designing urban BMPs. Water Resources Publications. Retrieved from: <u>https://www.mwcog.org/documents/1987/07/01/controlling-urban-runoff-bmp-stormwa</u> <u>ter/</u>.
- TR-55: Conservation Engineering Division, Natural Resources Conservation Service, United States Department of Agriculture. (1986). Urban Hydrology for Small Watersheds

 TR-55.
 Retrieved
 from
 <u>https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf</u>.
- U.S. Environmental Protection Agency. (2009). Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects. Retrieved from: <u>https://www.epa.gov/sites/production/files/2015-08/documents/epa_swm_guidance.pd</u> <u>f</u>.
- Wing, O. E., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A., Fargione, J., & Morefield, P. (2018). Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters, 13(3), 034023. Retrieved from: <u>https://iopscience.iop.org/article/10.1088/1748-9326/aaac65/pdf</u>.

Urban Heat Island Effect

Improving vegetated land cover and increasing and scope of vegetation reduces ambient temperatures as it increases the albedo of the project location, effectively cooling the ambient surroundings near green space. This decrease in ambient temperature is responsible for providing respite from extreme summer temperatures. This translates into a social benefit – especially in a hot environment in terms of reduced heat stress and stroke induced mortality.


To calculate mortality benefits between the base and design cases, Solar Reflectivity Index (SRI) and heat flux are compared. These differences in values impact the average forecasted temperature and reduce average mortality rate from a literature derived mortality to temperature relationship across North America, which occurs when the threshold minimum mortality temperature (MMT) in the region is exceeded (Curriero et al., 2002).

The temperature data used to run the urban heat island benefits is sourced from the Canadian Center for Climate Modelling and Analysis (2017). Temperature data within this source is forecasted from 2020 to 2100 from RCP 4.5 across granular location grids covering 25x25 square kilometers.

As minimum mortality values remain stable, the average number of days over this threshold rises, and the difference in temperature each project contributes to the area of San Antonio is attributed to a number of lives saved by the relationship between death and temperature changes.

This reduced mortality is monetized with the standard method of Value of Statistical Life (U.S. Environmental Protection Agency, 2010), where internationally accepted standards are employed to derive the value of a human life with respect to willingness to pay functions of loss of health, bodily issues, and experimentally derived risk taking behavior of people.

- Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, 69, 22-32. Retrieved from: <u>https://www.sciencedirect.com/science/article/pii/S0378778813006580.</u>
- Anderson, G. B., & Bell, M. L. (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environmental health perspectives, 119(2), 210-218. Retrieved from: <u>https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1002313</u>.
- Basu, R., Feng, W. Y., & Ostro, B. D. (2008). Characterizing temperature and mortality in nine California counties. Epidemiology, 138-145. Retrieved from: <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.2546&rep=rep1&type=pd</u> <u>f</u>.
- Canadian Centre for Climate Modelling and Analysis (CCCma). (2017). CanESM2 model: The Fourth Generation Global Climate Model. Retrieved from: <u>http://climate-modelling.canada.ca/data/data.shtml</u>.
- Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999-2019 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at <u>http://wonder.cdc.gov/ucd-icd10.html</u>.
- Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L., & Patz, J. A. (2002). Temperature and mortality in 11 cities of the eastern United States. American journal of epidemiology, 155(1), 80-87. Retrieved from: https://academic.oup.com/aje/article/155/1/80/134292.
- Guo, Y., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B., Tobias, A., ... & Tong, S. (2014). Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology (Cambridge, Mass.), 25(6), 781. Retrieved from: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180721/</u>.
- Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of environmental management, 197, 522-538. Retrieved from: https://www.academia.edu/download/53441691/The_UHI_effect_with_reference_to_As https://www.academia.edu/download/53441691/The_UHI_effect_with_reference_to_As https://www.academia.edu/download/53441691/The_UHI_effect_with_reference_to_As https://www.academia.edu/download/53441691/The_UHI_effect_with_reference_to_As
- Radhi, H., Fikry, F., & Sharples, S. (2013). Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning, 113, 47-61. Retrieved from: <u>https://www.sciencedirect.com/science/article/pii/S0169204613000200</u>.
- Rosenzweig, C., Solecki, W., & Slosberg, R. (2006). Mitigating New York City's heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority. Retrieved from:

https://usclimateandhealthalliance.org/post_resource/mitigating-new-york-citys-heat-isl and-with-urban-forestry-living-roofs-and-light-surfaces/.

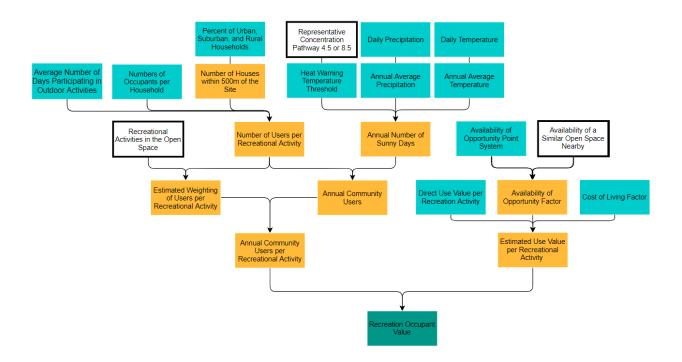
- Sailor, D. J., & Hagos, M. (2011). An updated and expanded set of thermal property data for green roof growing media. Energy and buildings, 43(9), 2298-2303. Retrieved from: https://www.sciencedirect.com/science/article/pii/S0378778811002283.
- Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. Retrieved from: <u>https://www.sciencedirect.com/science/article/pii/S0038092X10004020</u>.
- Sharma, A., Woodruff, S., Budhathoki, M., Hamlet, A. F., Chen, F., & Fernando, H. J. S. (2018). Role of green roofs in reducing heat stress in vulnerable urban communities—A multidisciplinary approach. Environmental Research Letters, 13(9), 094011. Retrieved from: <u>https://iopscience.iop.org/article/10.1088/1748-9326/aad93c/pdf</u>.
- Tran, N., Powell, B., Marks, H., West, R., & Kvasnak, A. (2009). Strategies for design and construction of high-reflectance asphalt pavements. Transportation research record, 2098(1), 124-130. Retrieved from: http://web-ha.eng.auburn.edu/research/centers/ncat/files/reports/2009/rep09-02.pdf.
- U.S. Census Bureau. (2019). 2019: ACS 5-Year Estimates Detailed Tables. Retrieved from: <u>https://data.census.gov/cedsci/table?q=B01003&tid=ACSDT5Y2019.B01003&hidePrevie</u>

https://data.census.gov/cedsci/table?q=B01003&tid=ACSD15Y2019.B01003&hidePrevie w=false.

- U.S. Environmental Protection Agency. (2010). Guidelines for preparing economic analyses. Retrieved from: https://www.epa.gov/sites/production/files/2017-08/documents/ee-0568-50.pdf.
- Uzarowski, L., Eng, P., Rizvi, L. R., Manolis, L. S., & Paving, C. (2018). Reducing Urban Heat Island Effect by Using Light Coloured Asphalt Pavement. In TAC 2018: Innovation and Technology: Evolving Transportation-2018 Conference and Exhibition of the Transportation Association of Canada. Retrieved from: <u>https://www.tac-atc.ca/sites/default/files/conf_papers/uzarowskil_-reducing_urban_he</u> <u>at_island_effect_using_lcap.pdf</u>.

Open Space - Recreation

Investments in open space can provide the opportunity for community members in the vicinity of each project to participate in recreation activities. Literature suggests that recreational activities in open spaces are valued by individuals as they would otherwise have to pay to participate in similar activities in commercial facilities with admission fees.


To calculate the local recreation users around the project locations, the expected number of residential dwellings (U.S. EPA, 2020; Bierwagen et al., 2010), within an area using a 500 meter radius around the site, is combined with population density values (US Census Bureau, 2019) to estimate the number of potential residential recreation users within the project radius.

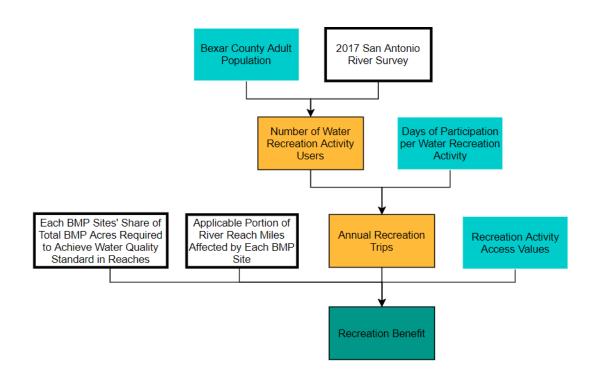
The US EPA's ICLUS (Integrated Climate and Land Use Scenarios) tool is used to estimate the base case or existing green space/park area within the radius. To calculate the difference between the base and design cases, Autocase estimates the percent addition of green space (relative to the existing green space) available to the community to recreate. BMPs encourage recreation since they enhance natural beauty by incorporating diverse vegetation and attracting pollinators and other wildlife. This increase in total BMP acreage thus incentives land-based recreation activities (birdwatching, viewing nature, etc) that otherwise would not be available to local users.

To estimate the increase in recreation user days from a marginal increase in green space, annualized days of participation for the land-based recreational activities (noted above) are estimated (White et al., 2016). With the total annual number of recreation days per user known, the percent increase in local green space is attributed to the number of days users are expected to recreate. For example, assuming a 5% increase in greenspace and that people recreate in nature on average 163 days per year, we could attribute approximately an 8.15 day increase in recreation by the local community (on an annual basis).

Taking the number of days a user would recreate, the incremental number of community users who would recreate at the BMP location is calculated. Autocase Advisory applies a cost of living index (Numbeo 2018) and inflation to the per activity direct use values (TTPL 2008a; 2008b) to determine the value per activity for San Antonio. The annual number of community members that use the open space are combined with the use weighting per activity (TTPL 2008a; 2008b) to estimate the annual number of users per activity. The product of the value per activity and the annual number of users per activity is summed across the activities selected in the open space. This annual value is summed over the operational period to determine the Open Space - Recreation benefit. This valuation only applies to Sites 1, 2, 3, 4, and 5 due to the availability and direct usability of these open spaces to the public at large.

- Bierwagen, B. G., Theobald, D. M., Pyke, C. R., Choate, A., Groth, P., Thomas, J. V., & Morefield, P. (2010). National housing and impervious surface scenarios for integrated climate impact assessments. Proceedings of the National Academy of Sciences, 107(49), 20887-20892. Retrieved from: https://www.pnas.org/content/pnas/107/49/20887.full.pdf.
- Numbeo. (2018). Cost of Living Index by City 2018. Retrieved from: <u>https://www.numbeo.com/cost-of-living/rankings.jsp?title=2018</u>.
- The Trust for Public Land's (TTPL) Center for City Park Excellence. (2008a). How Much Value Does the City of Philadelphia Receive from its Park and Recreation System? Retrieved from: <u>http://cloud.tpl.org/pubs/ccpe-boston-park-value-report.pdf</u>
- The Trust for Public Land's (TTPL) Center for City Park Excellence. (2008b). How Much Value Does the City of Philadelphia Receive from its Park and Recreation System? Retrieved from: <u>https://www.tpl.org/sites/default/files/cloud.tpl.org/pubs/ccpe_PhilaParkValue_Calculat</u> ors.pdf.
- U.S. Census Bureau. (2019). Quick Facts, San Antonio city, Texas. Retrieved from: https://www.census.gov/quickfacts/fact/table/sanantoniocitytexas/PST045219
- U.S. Environmental Protection Agency (EPA). (2020). Integrated Climate and Land Use Scenarios (ICLUS). Retrieved from: https://iclus.epa.gov/#v=map&b=gray-vector&l=4!8!9!6&x=-100.27!-77.03!-75.55!-122.4& y=39.87!38.7!40.43!37.78&m=1&s=ssp2!ssp2!ssp2!ssp2&d=land_use!land_use!land_use !land_use&o=giss_e2_r!giss_e2_r!giss_e2_r!giss_e2_r&a=0&z=2.

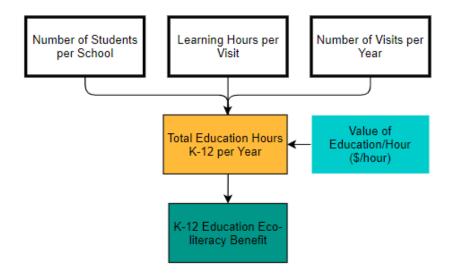
 White, E., Bowker, J. M., Askew, A. E., Langner, L. L., Arnold, J. R., & English, D. B. (2016). Federal outdoor recreation trends: effects on economic opportunities. US Department of Agriculture, Forest Service, Pacific Northwest Station. 46 p., 945. Retrieved from: <u>https://www.fs.fed.us/pnw/pubs/pnw_gtr945.pdf</u>


Water Quality - Induced Recreation

Capturing stormwater and runoff before it enters surface waters also captures pollutants. By passively removing these pollutants through BMPs including improved vegetated land cover, the potential of recreation activities associated with surface waters increases. Though individual BMPs are unlikely to materially change the quality of surface water, together they are able to influence the water quality of the surface water body downstream.

A primary objective of the GSI Master Plan is to reduce stormwater runoff pollution flowing into the San Antonio River, not only to protect essential and significant life in water, but also to achieve Texas Surface Water Quality Standards suitable for both direct (swimming) and in-direct (non-motorized boating) recreation users (as outlined by the EPA). SARA has prepared an extensive Master Plan accounting for all river reaches flowing through the San Antonio River that outlines the area of BMP installations required in each subbasin to achieve this water quality standard. The 8 sites identified in this analysis are assumed to incrementally improve water recreation, when scaled relative to the total BMP acreage required for achieving the standard. As such, benefits are assigned in the form of marginally inducing water-based recreation along the San Antonio River. These results must be carefully interpreted as the incremental improvement in water quality towards the EPA standard, such that they do not imply that recreation would immediately become available to those particular river segments. Instead, the results reflect the incremental value of induced water recreation provided by each site if the GSI Master Plan was implemented across all subbasins draining to the San Antonio River above its confluence with Salado Creek. The NPV results for each site are scaled based on the contribution of the BMP site area to the total BMP acreage identified in the GSI Master Plan required to achieve Texas Surface Water Quality Standards.

To calculate water-based recreation benefits, the number of adults who would recreate in or around the San Antonio River system, if improvements to water quality occurred, is determined using public opinion surveys (SARA, 2017). Using population estimates (U.S. Census Bureau, 2019) and days of participation for specific recreation activities (White et al., 2016), the annual number of recreation trips is calculated. This increased number of water-based recreation trips is monetized using EPA (2017) guidance on water recreation activity access values, which is then assigned to each site based on the share of the sites' BMP(s) in the total BMP acres required to achieve water quality standard in the reaches, and the applicable portion of the miles of river reach that are affected by that site. It should be noted that this impact is applicable to watershed wide recreation (by assuming all BMPs outlined in the SARA GSI Master Plan are implemented), as compared to open space recreation that is land-based and specific to the immediate areas around the proposed BMP sites.


- San Antonio River Authority (SARA). (2017). 2017 San Antonio River Survey. Provided via personal communications (emails) with SARA.
- U.S. Census Bureau. (2019). Quick Facts, Bexar County, Texas. Retrieved from: https://www.census.gov/quickfacts/fact/table/bexarcountytexas/PST045219
- U.S. Environmental Protection Agency (EPA). (2017). Estimating the Value of Water: A Literature Review. Retrieved from: <u>https://www.epa.gov/npdes/estimating-value-water-literature-review</u>
- White, E., Bowker, J. M., Askew, A. E., Langner, L. L., Arnold, J. R., & English, D. B. (2016). Federal outdoor recreation trends: effects on economic opportunities. US Department of Agriculture, Forest Service, Pacific Northwest Station. 46 p., 945. Retrieved from: <u>https://www.fs.fed.us/pnw/pubs/pnw_gtr945.pdf</u>

Education

GSI BMP investments located at or near schools often offer unique learning opportunities and support education for students, children, and adults alike. Improving eco-literacy and the general public's awareness is valuable and part of a suite of tools to change behavior towards sustainable action. Students learn about water management, natural habitats, and innovative green engineering projects.

The learning aspect of BMP projects is valued through the equivalent cost of classroom education for K-12 in San Antonio (U.S. Department of Education, 2016), with the assumption that education within the classroom is equivalent to education at the project site. Education system budgets are apportioned per student in each corresponding state to generate a willingness to pay valuation for education. Visit rates are estimated from the number of students at each school, with a corresponding lesson per year. The estimated number of student hours spent on-site is multiplied by the cost of educating a student per hour to give us the educational value for the time students spend at the project site. This valuation only applies to Sites 1, 3, 4, and 5 due to the proximity and availability of these BMP sites to school facilities.

- Estimates for learning hours per visit and number of visits per year were provided by SARA GSI.
- U.S. Department of Education National Center for Education Statistics (NCES). (2018). School and Staffing Survey (SASS): Table 7. Average class size in public primary schools, middle schools, high schools, and schools with combined grades, by classroom type and state: 2011–12. Retrieved from: https://nces.ed.gov/surveys/sass/tables/sass1112_2013314_t1s_007.asp.

- U.S. Department of Education National Center for Education Statistics (NCES). (2018). State Education Practices (SEP): Table 5.14. Number of instructional days and hours in the school year, by state: 2018. Retrieved from: https://nces.ed.gov/programs/statereform/tab5_14.asp.
- U.S. Department of Education National Center for Education Statistics (NCES). (2016). Common Core of Data (CCD), "National Public Education Financial Survey (State Fiscal)", 2016-17 v.1a; "Public Elementary/Secondary School Universe Survey", 2017-18 v.1a; "State Nonfiscal Public Elementary/Secondary Education Survey", 2016-17 v.1a, 2017-18 v.1a, 2018-19 v.1a. Retrieved from: https://nces.ed.gov/ccd/elsi/tableGenerator.aspx?savedTableID=126809.

Public Signage

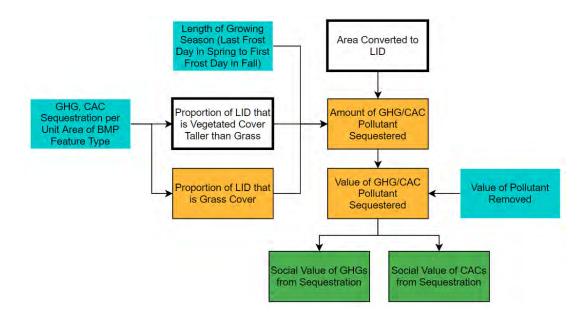
GSI has the potential to contribute to increased environmentally responsible behaviors in three ways:

(1) by providing information about the connection between individual choices/actions and water pollution;

- (2) by providing social signals that highlight responsible behavior; and
- (3) by providing opportunities to engage directly in environmentally responsible behavior (U.S. Environmental Protection Agency, 2017).

One method to provide information to individuals is via public signage, which can positively affect community perceptions of the environment, community education with the space and overall improvements in the quality of life of surrounding residents (Thompson et al., 2013; U.S. Environmental Protection Agency, 2017). Autocase investigated the potential community benefit of installing BMP signage but was not able to monetize this impact due to inherent limitations in the literature.

- Thompson, C. W., Roe, J., & Aspinall, P. (2013). Woodland improvements in deprived urban communities: what impact do they have on people's activities and quality of life?. Landscape and urban planning, 118, 79-89. Retrieved from: https://www.sciencedirect.com/science/article/pii/S0169204613000224.
- U.S. Environmental Protection Agency. (2017). Expanding the benefits of Seattle's Green Stormwater infrastructure. Retrieved from: <u>https://www.epa.gov/green-infrastructure/expanding-benefits-seattles-green-stormwater</u> <u>-infrastructure</u>


Environmental Impacts

Carbon and Air Pollution Sequestration

Newly planted trees, shrubs, grasses, and plants can sequester carbon from the atmosphere, reducing the impacts of climate change. Additionally, growing trees, shrubs, grasses, and plants can act as 'carbon sinks,' absorbing carbon dioxide from the air and incorporating it into their stems or trunks, branches, and roots, as well as into the soil. While landscaping and maintenance activities result in greenhouse gas (GHG) emissions (referred to as the "lawnmower effect"), these activities are more than offset by the sequestration potential of BMPs. Criteria Air Contaminants (CACs) are air pollutants that are also emitted by fossil fuel combustion, which affect the health of people immediately in their vicinity. CACs are removed from the air by trees and shrubs. As the trees on site mature throughout the life of the project their canopies grow and capture air pollutants at an increasing rate.

Sequestration rates for both Carbon Dioxide (CO_2) and CACs are taken from literature. These studies include Leibig et al. (2008); Selhorst & Rattan (2013); Whittinghill et al. (2014); Qian et al. (2010); Zirkle et al. (2011); Gopalakrishnana et al. (2018); Nowak et al., (2013); and Yang et al. (2008). This makes it possible to estimate the metric tonnes of pollutants sequestered by the vegetation growing in the BMP being implemented. The existing vegetation cover of sites that are converted to BMPs is assumed to be low-height manicured lawn. BMPs that include vegetation - such as bioretention basins, and bioswales - are assumed to be medium height vegetation such as forbs and sedges. This helps to account for the differences in sequestration rates between different vegetation types. The metric tonnes of each pollutant are then multiplied by the social cost of each pollutant to determine the value of the change in pollution. The social costs of each pollutant are taken from literature as well as government documents. These studies include research conducted by EASIUR (2015); U.S. Department of Transportation (2017); Transportation Research Board (2002); Victoria Transport Policy Institute (2007); Muller and Mendelsohn (2007); Sawyer et al. (2007); IWG (2016); Rabl and Spadaro (2000); and Wang et al. (1994).

References

- The Estimating Air pollution Social Impact Using Regression (EASIUR) model: Marginal Social Costs of Emissions in the United States. (2015). Retrieved from: <u>https://barney.ce.cmu.edu/~jinhyok/easiur/</u>
- Gopalakrishnan, V., Hirabayashi, S., Ziv, G., & Bakshi, B. R. (2018). Air quality and human health impacts of grasslands and shrublands in the United States. *Atmospheric Environment*, 182, 193-199. Retrieved from: <u>http://eprints.whiterose.ac.uk/129319/14/GopalakrishnanHirabayashiZivBakshi_Main_2</u> 0180130_v2.pdf.
- Interagency Working Group (IWG) on the Social Cost of Carbon (2016). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866". Retrieved from: <u>https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_20</u> <u>16.pdf</u>
- Liebig, M. A., Schmer, M. R., Vogel, K. P., & Mitchell, R. B. (2008). Soil carbon storage by switchgrass grown for bioenergy. Bioenergy Research, 1(3), 215-222. Retrieved from: <u>https://link.springer.com/article/10.1007/s12155-008-9019-5</u>.
- Muller, N. Z., & Mendelsohn, R. (2007). Measuring the damages of air pollution in the United States. Journal of Environmental Economics and Management, 54(1), 1-14. Retrieved
 https://www.esiap.edirect.com/ceiap.ec/article/pii/20005060607000005

https://www.sciencedirect.com/science/article/pii/S0095069607000095.

Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2. 5 removal by trees in ten US cities and associated health effects. Environmental pollution, 178, 395-402.
 Retrieved from:

https://www.fs.usda.gov/treesearch/pubs/download/43676.pdf.

- Qian, Y., Follett, R. F., & Kimble, J. M. (2010). Soil organic carbon input from urban turfgrasses. Soil Science Society of America Journal, 74(2), 366-371. Retrieved from: <u>https://pubag.nal.usda.gov/download/41350/PDF</u>.
- Rabl, A., & Spadaro, J. V. (2000). Public health impact of air pollution and implications for the energy system. Annual review of Energy and the Environment, 25(1), 601-627. Retrieved

https://www.annualreviews.org/doi/full/10.1146/annurev.energy.25.1.601.

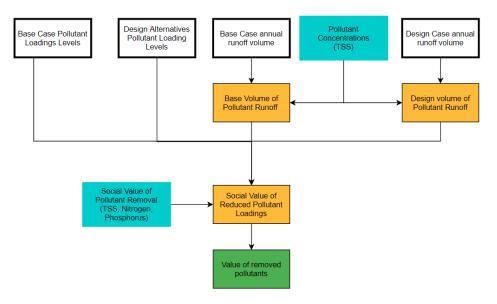
- Sawyer, D., Stiebert, S., & Welburn, C. (2007). Evaluation of total cost of air pollution due to transportation in Canada. Transport Canada, Ottawa, ON, Canada. Retrieved from: <u>http://www.bv.transports.gouv.qc.ca/mono/1022480.pdf</u>.
- Selhorst, A., & Lal, R. (2013). Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environmental management, 51(1), 198-208. Retrieved from: <u>https://link.springer.com/article/10.1007/s00267-012-9967-6</u>.
- Transportation Research Board (TRB). (2002). Transit Cooperative Research Program (TCRP) Report 78: Estimating the Benefits and Costs of Public Transit Projects: A Guidebook for Practitioners. Retrieved from: <u>http://www.trb.org/Publications/Blurbs/153766.aspx</u>.
- U.S. Department of Transportation. (2017). Benefit Cost Analysis Guidance for Discretionary Grant Programs. Retrieved from: <u>https://www.transportation.gov/sites/dot.gov/files/docs/mission/office-policy/transport</u> <u>ation-policy/284031/benefit-cost-analysis-guidance-2017_2.pdf</u>.
- U.S. Environmental Protection Agency. (2012). Regulatory Impact Analysis: Final New Source Performance Standards and Amendments to the National Emissions Standards for Hazardous Air Pollutants for the Oil and Natural Gas Industry. Retrieved from: <u>https://www.epa.gov/sites/production/files/2020-07/documents/oilgas_ria_final-neshap</u> <u>-amendments_2012-04.pdf</u>.
- Victoria Transport Policy Institute. (2007). Transportation Cost and Benefit Analysis: Techniques, Estimates and Implications. Chapter 5.10 - Air Pollution. Retrieved from: <u>http://www.vtpi.org/tca/tca0510.pdf</u>.
- Wang, M. Q., Santini, D. J., & Warinner, S. A. (1994). Methods of valuing air pollution and estimated monetary values of air pollutants in various US regions (No. ANL/ESD-26). Argonne National Lab., IL (United States). Center for Transportation Research.

https://www.osti.gov/servlets/purl/10114725-f7ktvT/webviewable.

- Whittinghill, L. J., Rowe, D. B., Schutzki, R., & Cregg, B. M. (2014). Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landscape and Urban Planning, 123, 41-48. Retrieved from: https://www.sciencedirect.com/science/article/pii/S0169204613002296.
- Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmospheric environment, 42(31), 7266-7273. Retrieved from: <u>https://www.sciencedirect.com/science/article/abs/pii/S1352231008006262</u>.

• Zirkle, G., Lal, R., & Augustin, B. (2011). Modeling carbon sequestration in home lawns. HortScience, 46(5), 808-814. Retrieved from: <u>https://journals.ashs.org/hortsci/view/journals/hortsci/46/5/article-p808.xml</u>.

Water Quality - Pollutant Loading Reduction

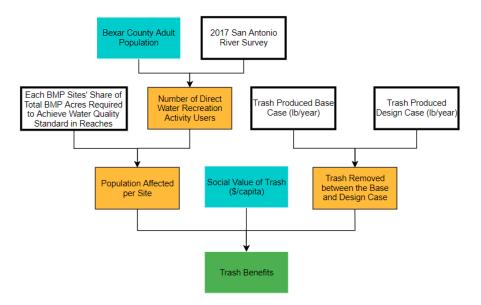

Capturing stormwater and runoff before it enters surface waters also captures pollutants. By passively removing these pollutants through improved vegetated land cover, environmental damages are avoided. Autocase has valued the avoided damages from capturing nitrogen, phosphorus, and total suspended solids (TSS). In order to achieve this the Autocase team underwent an extensive literature review, compiling the most defensible sources available from academic journals, and government reports. It was determined that the state of the literature limits the number of different monetized damages that can be applied to the targeted pollutants. The values that follow represent the best available figures the Autocase team was able to source.

The environmental value for removing each pollutant is different as the environmental damages for releasing an additional unit of pollution differs depending on the type of undesirable loading released in waterways. Nitrogen is valued using the willingness to pay (WTP) of society to reduce the ecosystem impacts derived from nitrogen pollution emitted into waterways. WTP estimates represent a more holistic method in capturing the true value of reducing nitrogen pollutants, as compared to using an avoided cost of water treatment that reflects only the financial benefit, but does not take into consideration the associated environmental externalities. The value Autocase uses in this analysis to monetize reductions in nitrogen loadings is specific to pollution emitted to surface water sources, reflecting the marginal benefits of reducing eutrophication and impacts to biodiversity (Van Grinsven et al., 2013). This value was also used by the University of Virginia and University of New Hampshire to evaluate the institutional cost of Nitrogen runoff from their facilities (Compton et al., 2017). The value from literature for total Nitrogen is also in alignment with estimates found through integrated assessment modelling (as used to calculate the Social Cost of Carbon) to determine the Social Cost of Nitrogen (Keeler et al., 2016). The limitations of using the surface water valuation method from the Van Grinsven study is that it does not include human health impacts, which are only applied to nitrogen pollution emitted to groundwater sources that directly affect drinking water quality.

The value of phosphorus is based on the monetized benefits of increased property values for waterfront properties, improved recreational opportunities, and avoided costs of cleanup and management. This value was estimated by the Wisconsin Department of Natural Resources, where they found the amount of phosphorus reduced using regulatory measures, and divided by the total estimated benefits, to find the per pound value of reductions in phosphorus (WDNR, 2012).

The value of TSS is a shadow price determined from the water recycling process. A study used data collected from wastewater treatment plants to determine how much people were willing to pay for treated water quality improvements. They used a production function that had the production of various pollutants as a constraint for the creation of potable recycled water. The shadow price reflects how much society is willing to pay to get a unit of clean water by removing a kilogram of TSS (Hernández-Sancho, Molinos-Senante, et al., 2010).

- Water pollutant loading inputs were provided by SARA, except for Total Suspended Solids (which were estimated by Autocase).
- Compton, J. E., Leach, A. M., Castner, E. A., & Galloway, J. N. (2017). Assessing the social and environmental costs of institution nitrogen footprints. Sustainability: The Journal of Record, 10(2), 114-122. Retrieved from: https://www.liebertpub.com/doi/pdf/10.1089/sus.2017.29099.jec.
- Hernández-Sancho, F., Molinos-Senante, M., & Sala-Garrido, R. (2010). Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the total environment, 408(4), 953-957. Retrieved from: <a href="https://www.researchgate.net/profile/Ramon_Sala-Garrido/publication/226890917_Environmental_Benefits_of_Wastewater_Treatment_An_Economic_Valuation/links/5ab75edd_0f7e9b68ef5030b2/Environmental-Benefits-of-Wastewater-Treatment-An-Economic-Valuation.pdf.
- Keeler, B. L., Gourevitch, J. D., Polasky, S., Isbell, F., Tessum, C. W., Hill, J. D., & Marshall, J. D. (2016). The social costs of nitrogen. Science Advances, 2(10), e1600219. Retrieved from: https://advances.sciencemag.org/content/advances/2/10/e1600219.full.pdf.
- Van Grinsven, H. J., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A., & Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental science & technology, 47(8), 3571-3579. Retrieved from:

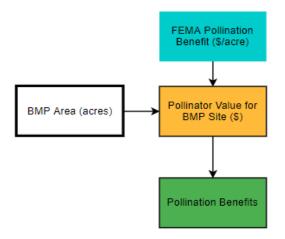


http://www.iai.int/admin/site/sites/default/files/uploads/Van-Grinsven-et-al-2013-es303 804g.pdf.

• The Wisconsin Department of Natural Resources (WDNR). (2012). Phosphorus Reduction in Wisconsin Water Bodies: A Economic Impact Analysis. Retrieved from: <u>https://dnr.wi.gov/topic/SurfaceWater/documents/PhosphorusReductionEIA.pdf</u>.

Trash

Structural and non-structural BMPs can be used to reduce the amount of trash loaded into streams subsequently carried to new areas. Compared to managed turf land covers, BMP installations can more effectively trap trash, thus reducing the amount that flows downstream affecting direct water users. The change in the amount of trash from the implementation of BMPs is taken from estimates provided by SARA GSI. This change in the amount of trash is valued using the social cost of trash (Stickel et al., 2013) as well as the population who would be impacted by the trash at each site (US Census Bureau, 2019; SARA, 2017).


- Estimates of trash produced in the base and design case are provided by SARA.
- San Antonio River Authority (SARA). (2017). 2017 San Antonio River Survey. Provided via personal communications (emails) with SARA.
- Stickel, B. H., Jahn, A., & Kier, B. (2013). Waste in our water: The Annual Cost to California Communities of Reducing Litter That Pollutes our waterways. Kier Associates: San Rafael, CA. Retrieved from: <u>https://www.nrdc.org/sites/default/files/oce_13082701a.pdf</u>.
- U.S. Census Bureau. (2019). Quick Facts, Bexar County, Texas. Retrieved from: https://www.census.gov/quickfacts/fact/table/bexarcountytexas/PST045219.

Pollination

Pollination is a service provided by ecosystems when habitat is provided to pollinator species. The determination of the value of specific ecosystem services (such as pollination) provided by certain green infrastructure can be valued using the area of that infrastructure, and the per acre value to the ecosystem service, which is estimated by the Federal Emergency Management Agency (FEMA).

Pollinator benefits are expected to accrue to the environment by changing the management of the turf in these GSI sites and allowing the vegetation to grow longer and return to native land covers. Generally, pollination potential depends on how the project site is managed currently. Actively managing the landscape by mowing the grass low and applying a broadleaf herbicide are two of the common practices that are harmful to pollinator species. Alternatively, planting native/pollinator plants would provide more flowering plants for food and vegetative cover for pollinator habitat. Additional benefits to pollinators are expected to accrue if the native ground cover is allowed to fill in, eliminating the need for herbicide applications. Moreover, it is recommended that turf landscaping practices shift to unmanaged to enable more native land covers and limit herbicide use in open spaces.

References

• BMP area breakdowns were provided by SARA.

• Federal Emergency Management Agency (FEMA). (2013). Consideration of Environmental Benefits in the Evaluation of Acquisition Projects under the Hazard Mitigation Assistance (HMA) Programs. Retrieved from: https://www.fema.gov/media-library-data/20130726-1920-25045-2892/environmental_benefits_calculator_v2.pdf.

Detailed Results Tables & Charts

Table 1. Results Summary of All Project Sites 1-8 | Net Present Value Over 50 Years Discounted at 3%

	Impact	Site 1 (Subbasin 70)	Site 2 (Subbasin 150)	Site 3 (Subbasin 260)	Site 4 (Subbasin 270)	Site 5 (Subbasin 310)	Site 6 (Subbasin 330)	Site 7 (Subbasin 420)	Site 8 (Subbasin 560)
	Capital Expenditures	-\$318,400	-\$263,700	-\$754,800	-\$132,700	-\$155,000	-\$263,800	-\$181,900	-\$2,481,000
Financial	Operations & Maintenance	-\$450,800	-\$543,600	-\$1,498,000	-\$161,900	-\$194,300	-\$185,400	-\$240,600	-\$811,100
Fillancia	Replacement Costs	-\$223,379	-\$190,590	-\$530,795	-\$57,342	-\$68,835	-\$68,624	-\$89,051	-\$284,379
	Residual Value	\$21,100	\$12,700	\$35,500	\$3,830	\$4,600	\$4,590	\$5,950	\$19,000
	Flood Risk	\$850	\$400	\$1,156	\$72	\$221	\$93	\$221	\$647
	Education	\$30,915	\$0	\$30,915	\$30,915	\$30,915	\$0	\$0	\$0
Social	Urban Heat Island	\$6,700	\$3,080	\$8,610	\$930	\$1,120	\$1,110	\$1,440	\$4,620
ecola.	Open Space - Recreation	\$7,410	\$3,250	\$1,190	\$190	\$1,200	\$0	\$0	\$0
	Water Quality - Induced Recreation	\$2,126,544	\$1,668,031	\$2,731,634	\$295,244	\$354,365	\$353,296	\$458,359	\$767,218
	Air Pollution from Sequestration	\$880	\$400	\$1,130	\$120	\$150	\$150	\$190	\$600
	Carbon Emissions from Sequestration	\$71,100	\$32,700	\$91,300	\$9,860	\$11,800	\$11,800	\$15,300	\$49,000
Environmental	Trash	\$17,209	\$7,846	\$22,017	\$2,278	\$2,784	\$2,784	\$3,797	\$11,895
	Water Quality - Pollutant Loading Reduction	\$4,298	\$4,412	\$11,507	\$934	\$1,027	\$1,363	\$982	\$3,194
	Pollination	\$4,480	\$2,062	\$5,754	\$622	\$747	\$744	\$966	\$3,087
Financial NPV		-\$971,479	-\$985,190	-\$2,748,095	-\$348,112	-\$413,535	-\$513,234	-\$505,601	-\$3,557,479
Social NPV		\$2,172,419	\$1,674,761	\$2,773,505	\$327,351	\$387,821	\$354,499	\$460,020	\$772,485
Environmental NPV		\$97,967	\$47,420	\$131,708	\$13,814	\$16,508	\$16,841	\$21,235	\$67,776
Triple Bottom Line NPV		\$1,298,907	\$736,991	\$157,118	-\$6,947	-\$9,206	-\$141,895	-\$24,346	-\$2,717,218

	Impact	All Sites (1 - 8)
	Capital Expenditures	-\$4,551,300
Financial	Operations & Maintenance	-\$4,085,700
Filidifcidi	Replacement Costs	-\$1,512,994
	Residual Value	\$107,270
	Flood Risk	\$3,658
	Education	\$123,660
Social	Urban Heat Island	\$27,610
	Open Space - Recreation	\$13,240
	Water Quality - Induced Recreation	\$8,754,691
	Air Pollution from Sequestration	\$3,620
	Carbon Emissions from Sequestration	\$292,860
Environmental	Trash	\$70,610
	Water Quality - Pollutant Loading Reduction	\$27,717
	Pollination	\$18,462
Financial NPV		-\$10,042,724
Social NPV		\$8,922,859
Environmental N	IPV	\$413,269
Triple Bottom Li	ine NPV	-\$706,596

 Table 2. Results of All Project Sites | Net Present Value Over 50 Years Discounted at 3%

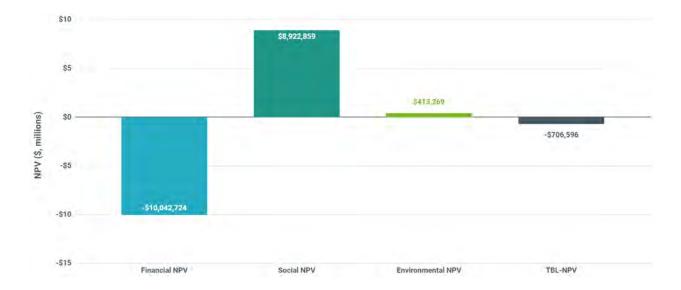


Figure 1. Comparison of the Expected TBL-NPV of Financial, Social, and Environmental Results For All Project Sites (1 - 8) | Net Present Value Over 50 Years Discounted at 3%

Appendix

Inputs from SARA

Autocase BMP Mapping

SARA BMP Nomenclature	Autocase BMP Classification
Bioretention	Bioretention / Rain Garden
Extended Detention Basin	Dry Detention Pond
Bioswale	Vegetated Buffer Strip / Swale

Site BMP Area

Site 1 (Subbasin 70)	Unit	Area
Base Case	Acres	0.5971
Managed Turf	Acres	0.5971
Design Case	Acres	0.5971
Extended Detention Basin	Acres	0.5175
Bioswale	Acres	0.0796

Site 2 (Subbasin 150)	Unit	Area
Base Case	Acres	0.2748
Managed Turf	Acres	0.2748
Design Case	Acres	0.2748
Bioretention	Acres	0.2748

Site 3 (Subbasin 260)	Unit	Area
Base Case	Acres	0.767
Managed Turf	Acres	0.767
Design Case	Acres	0.767
Bioretention	Acres	0.767

Site 4 (Subbasin 270)	Unit	Area
Base Case	Acres	0.0829
Managed Turf	Acres	0.0829
Design Case	Acres	0.0829
Bioretention	Acres	0.0829

Site 5 (Subbasin 310)	Unit	Area
Base Case	Acres	0.0995
Managed Turf	Acres	0.0995
Design Case	Acres	0.0995
Bioretention	Acres	0.0864
Bioswale	Acres	0.0131

Site 6 (Subbasin 330)	Unit	Area
Base Case	Acres	0.0992
Managed Turf	Acres	0.0992
Design Case	Acres	0.0992
Bioretention	Acres	0.0992

Site 7 (Subbasin 420)	Unit	Area
Base Case	Acres	0.1287
Managed Turf	Acres	0.1287
Design Case	Acres	0.1287
Bioretention	Acres	0.1287

Site 8 (Subbasin 560)	Unit	Area
Base Case	Acres	0.4114
Managed Turf	Acres	0.4114
Design Case	Acres	0.4114
Bioswale	Acres	0.4114

BMP Pollutant Loading Reduction Estimates (per Year)

	Site 1 (Subbasin	Site 2 (Subbasin	Site 3 (Subbasin	Site 4 (Subbasin	Site 5 (Subbasin	Site 6 (Subbasin	Site 7 (Subbasin	Site 8 (Subbasin
Pollutant ¹	(oubbusiii 70)	150)	260)	270)	310)	330)	420)	560)
E. coli Bacteria								
(#10^6 org/year)	3,169,665	2,469,138	5,224,657	364,237	695,394	748,023	800,312	954,169
NO3N =								
Nitrate-Nitrogen								
(lb/year)	3.1887	7.8064	20.1489	1.5600	1.7740	2.1174	1.6844	4.4020
NH4N =								
Ammonia-Nitrogen								
(lb/year)	2.1390	5.1376	13.2526	1.0146	1.1534	1.3446	1.0419	2.5342
Organic nitrogen								
(lb/year)	0.9275	6.2649	16.9378	1.6029	1.6298	2.4369	1.6969	6.1071
Total Phosphorus								
(lb/year)	2.8394	3.2859	8.1999	0.5291	0.6143	0.7896	0.5569	1.9171
ORTHOP =								
Orthophosphorus								
(lb/year)	1.1319	1.3128	3.2801	0.2105	0.2483	0.3143	0.2218	0.7696
TSS (tons/year)	14.8773	0.7753	2.1355	0.2151	0.2399	0.5165	0.1929	1.9949
Outflow Volume								
(OVOL)								
(acre feet/year)	0.2493	0.9476	2.6100	0.2629	0.2932	0.6313	0.2358	2.4382

¹ Bolded line items indicate pollutant loadings estimated by Autocase.

Financial Costs of Land Covers

Cost	Site 1 (Subbasin 70)	Site 2 (Subbasin 150)	Site 3 (Subbasin 260)	Site 4 (Subbasin 270)	Site 5 (Subbasin 310)	Site 6 (Subbasin 330)	Site 7 (Subbasin 420)	Site 8 (Subbasin 560)
Upfront								
Capital Costs	\$337,789.38	\$279,787.20	\$800,762.73	\$140,763.44	\$164,476.73	\$279,873.79	\$192,952.55	\$2,631,888.00
Annual O&M								
Costs	\$19,686.50	\$22,920.00	\$63,841.75	\$6,898.92	\$8,279.85	\$8,253.11	\$10,709.37	\$34,196.64
Replacement Costs								
6-10 Years	\$24,000.00	\$35,280.00	\$98,269.50	\$10,619.28	\$12,744.90	\$12,703.74	\$16,484.58	\$52,637.76
20 Years	\$202,111.25	\$122,040.00	\$339,932.25	\$36,734.04	\$44,086.95	\$43,944.57	\$57,023.19	\$182,083.68
Base Case Annual O&M Cost Estimates								
Managed Turf (\$ / square foot)	\$0.03	\$0.01	\$0.03	\$0.03	\$0.03	\$0.11	\$0.11	\$0.01

- Base Case Annual O&M Cost Estimates for Sites 1, 2, 3, 4, 5, and 8 were provided by SARA. Due to receiving no data from SARA on O&M estimates for Site 6 and 7, Autocase used an average of the highest SARA estimate (\$0.03 / sq ft) and Autocase's literature reviewed-value of O&M for managed turf (\$0.19 / sq ft) to determine a value of \$0.11 / sq ft for Site 6 and 7 base case managed turf O&M costs.
- Cheng, H., Hu, Y., & Reinhard, M. (2014). Environmental and health impacts of artificial turf: a review. Environmental science & technology, 48(4), 2114-2129. Retrieved from: <u>https://core.ac.uk/download/pdf/71730025.pdf</u>.
- Hall, C. R., Sorochan, J. C., & Samples, T. (2005). Costs of managing a bermudagrass football field in Tennessee. Univ. Tenn. Ag. Ext. Factsheet, 651. Retrieved from: <u>https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1019&context=utk_agexcomhor</u> <u>t</u>.
- San Antonio River Authority (SARA). (2019). San Antonio River Basin Low Impact Development Technical Design Guidance Manual. Second Edition. Retrieved from: <u>https://www.sariverauthority.org/sites/default/files/2019-08/SARB%20LID%20Technical</u> %20Design%20Manual%202nd%20Edition.pdf.
- Uhlman, B., Diwan, M., Dobson, M., Sferrazza, R., & Songer, P. (2010). Synthetic Turf, Eco-Efficiency Analysis Final Report. Florem park NJ, BASF Corporation. NSF Protocol P, 352. Retrieved from: <u>https://d2evkimvhatqav.cloudfront.net/documents/Synthetic_Turf_EEA_Study_Verification_Final.pdf</u>.

- U.S. Environmental Protection Agency. (1995). Appendix 8. Examples of Natural Landscaping Installation and Maintenance Cost. Retrieved from: <u>https://archive.epa.gov/greenacres/web/pdf/appendix8.pdf</u>.
- U.S. Environmental Protection Agency. (2019). July 2019 Report: Tire Crumb Rubber Characterization: Synthetic Turf Field Recycled Tire Crumb Rubber Research Under the Federal Research Action Plan - Final Report Part 1 - Volume 2. Retrieved from: <u>https://www.epa.gov/sites/production/files/2019-08/documents/synthetic_turf_field_re</u> <u>cycled_tire_crumb_rubber_research_under_the_federal_research_action_plan_final_repor</u> <u>t_part_1_volume_2.pdf</u>.

Inputs from Autocase

General Inputs

Input	Expected Value	
Project name	SARA GSI Master Pan	
State	ТХ	
City	San Antonio	
Zip Code	78247	
Project Start Date	08/2022	
Construction Period (years)	1	
Operations Period (years)	50	
Discount Rate	3%	

Project Location Characteristics

Input	Units	Average	
Length of growing season (replaces non-frost days)	#	299	
Population of City (2019)	#	1,547,253	
Housing Density	Houses / sq mile	180.30	
Area of the City (2010)	sq mile	460.93	
City Area in Floodplain	%	5.0	
Property Value (2019)	\$	164,458	

References

- U.S. Census Bureau (2020). Quick Facts. Scan Antonio City, Texas. Retrieved from: <u>https://www.census.gov/quickfacts/fact/table/sanantoniocitytexas/POP060210</u>.
- Weather Spark (2020). Average Weather in San Antonio. Retrieved from: <u>https://weatherspark.com/y/7137/Average-Weather-in-San-Antonio-Texas-United-States-Year-Round</u>.
- Zillow (2020). Zillow Home Value Index (ZHVI). Housing Data. Retrieved from: <u>https://www.zillow.com/research/data/</u>.

Input	Unit	Expected Value ²	
Social Cost of NO _x	\$ / metric tonnes	10,692.29	
Social Cost of SO ₂	\$ / metric tonnes	37,617.47	
Social Cost of PM _{2.5}	\$ / metric tonnes	219,262.52	
Social Cost of VOC	\$ / metric tonnes	2,262.60	
Social Cost of Carbon (SCC)	\$ / metric tonnes	51.94	
SCC growth rate (2010-2020)	% / year	3.55	
SCC growth rate (2020-2030)	% / year	1.90	
SCC growth rate (2030-2040)	% / year	2.00	
SCC growth rate (2040+)	% / year	1.50	
Social Cost of TSS	\$ / kg	0.01	
Social Cost of Total Nitrogen	\$ / kg	17.71	
Social Cost of Total Phosphorus	\$ / kg	12.05	
Social Cost of Trash	\$ / person / year	12.49	
Value of Statistical Life	\$ / person	9,503,528.51	

Advanced Inputs

- The Estimating Air pollution Social Impact Using Regression (EASIUR) model: Marginal Social Costs of Emissions in the United States. (2015). Retrieved from: <u>https://barney.ce.cmu.edu/~jinhyok/easiur/</u>.
- Hernández-Sancho, F., Molinos-Senante, M., & Sala-Garrido, R. (2010). Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the total environment, 408(4), 953-957. Retrieved from: <a href="https://www.researchgate.net/profile/Ramon_Sala-Garrido/publication/226890917_Environmental_Benefits_of_Wastewater_Treatment_An_Economic_Valuation/links/5ab75edd_0f7e9b68ef5030b2/Environmental-Benefits-of-Wastewater-Treatment-An-Economic-Valuation.pdf.

² All dollar values are in 2020 U.S. Dollars (USD).

- Interagency Working Group (IWG) on the Social Cost of Carbon (2016). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866". Retrieved from: <u>https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_20</u> <u>16.pdf</u>
- Muller, N. Z., & Mendelsohn, R. (2007). Measuring the damages of air pollution in the United States. Journal of Environmental Economics and Management, 54(1), 1-14. Retrieved

https://www.sciencedirect.com/science/article/pii/S0095069607000095.

 Rabl, A., & Spadaro, J. V. (2000). Public health impact of air pollution and implications for the energy system. Annual review of Energy and the Environment, 25(1), 601-627. Retrieved

https://www.annualreviews.org/doi/full/10.1146/annurev.energy.25.1.601.

- Sawyer, D., Stiebert, S., & Welburn, C. (2007). Evaluation of total cost of air pollution due to transportation in Canada. Transport Canada, Ottawa, ON, Canada. Retrieved from: <u>http://www.bv.transports.gouv.qc.ca/mono/1022480.pdf</u>.
- Stickel, B. H., Jahn, A., & Kier, B. (2013). Waste in our water: The Annual Cost to California Communities of Reducing Litter That Pollutes our waterways. Kier Associates: San Rafael, CA. Retrieved from: <u>https://www.nrdc.org/sites/default/files/oce_13082701a.pdf</u>.
- Transportation Research Board (TRB). (2002). Transit Cooperative Research Program (TCRP) Report 78: Estimating the Benefits and Costs of Public Transit Projects: A Guidebook for Practitioners. Retrieved from: http://www.trb.org/Publications/Blurbs/153766.aspx.
- U.S. Department of Transportation. (2017). Benefit Cost Analysis Guidance for Discretionary Grant Programs. Retrieved from: <u>https://www.transportation.gov/sites/dot.gov/files/docs/mission/office-policy/transport</u> <u>ation-policy/284031/benefit-cost-analysis-guidance-2017_2.pdf</u>.
- U.S. Environmental Protection Agency. (2010). Guidelines for preparing economic analyses. Retrieved from: https://www.epa.gov/sites/production/files/2017-08/documents/ee-0568-50.pdf.
- U.S. Environmental Protection Agency. (2012). Regulatory Impact Analysis: Final New Source Performance Standards and Amendments to the National Emissions Standards for Hazardous Air Pollutants for the Oil and Natural Gas Industry. Retrieved from: <u>https://www.epa.gov/sites/production/files/2020-07/documents/oilgas_ria_final-neshap</u> <u>-amendments_2012-04.pdf</u>.
- Van Grinsven, H. J., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A., & Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental science & technology, 47(8), 3571-3579. Retrieved from: <u>http://www.iai.int/admin/site/sites/default/files/uploads/Van-Grinsven-et-al-2013-es303</u> <u>804g.pdf</u>.

- Victoria Transport Policy Institute. (2007). Transportation Cost and Benefit Analysis: Techniques, Estimates and Implications. Chapter 5.10 - Air Pollution. Retrieved from: <u>http://www.vtpi.org/tca/tca0510.pdf</u>.
- Wang, M. Q., Santini, D. J., & Warinner, S. A. (1994). Methods of valuing air pollution and estimated monetary values of air pollutants in various US regions (No. ANL/ESD-26). Argonne National Lab., IL (United States). Center for Transportation Research.
 Retrieved
 https://www.osti.gov/servlets/purl/10114725-f7ktvT/webviewable.
- The Wisconsin Department of Natural Resources (WDNR). (2012). Phosphorus Reduction in Wisconsin Water Bodies: A Economic Impact Analysis. Retrieved from: <u>https://dnr.wi.gov/topic/SurfaceWater/documents/PhosphorusReductionEIA.pdf</u>.

Subtask 4.3 - Stakeholder Engagement Report

This report is a record of the stakeholder engagement and feedback San Antonio River Authority (River Authority) received on the eight sites modeled as part of the work to create the Green Stormwater Infrastructure (GSI) Master Plan. It includes the stakeholder engagement process, stakeholder groups, stakeholder activities, stakeholder input on potential GSI implementation, and a summary record of the community workshops.

In addition, any project information and educational materials developed for the project and posted to the website is included. Also included are social media announcements and promotion of events and educational materials. The community workshops documentation includes announcements, agendas, presentation materials, and sign-in sheets.

The first step was to identify potential stakeholders for each priority subbasin. These included local governments, property owners, neighborhood associations, and non-profits who would have an interest in the potential implementation sites. Some stakeholders were engaged during the project application process, prior to the project being funded. Those stakeholders that provided a letter of support for the project application are identified below.

Stakeholder groups identified within the eight priority subbasins:

- The City of San Antonio
 - Office of Sustainability (provided letter of support)
 - Planning & Community Development
 - Public Works Department (was Transportation and Capital Improvement) • provided letter of support for the grant project application
 - Office of Equity
 - Parks and Recreation Department
- Bexar Regional Watershed Management (BRWM) Management Committee
 - Office of Sustainability Department
 - Planning & Community Development
 - Public Works Department
 - Parks and Recreation Department
- BRWM Watershed Technical Committee (WTC)
 - Public Works Department
 - San Antonio Water Systems
 - o Bexar County Stormwater Department (provided letter of support)
- Suburban Cities in priority areas
- Homeowners & Neighborhood Associations
- San Antonio Housing Authority (SAHA)
- SA 2030 District
- SA Climate Ready Plan
- SA Tomorrow Regional Centers
- Build San Antonio Green

The potential implementation sites were identified and presented to the stakeholders identified for the specific sites. Details on the site identification are outlined in the Dataset of Potential GSI Projects (Subtask 3.2). The River Authority presented this information to the following stakeholders: the BRWM

- Watershed Technical Committee (WTC), the San Antonio Housing Authority, and the City of San Antonio Parks Department.

Feedback from the stakeholder outreach is recapped below:

- The City of San Antonio Transportation & Capital Improvements Department (now Public Works) noted:
 - No future projects were found near the proposed sites in the SA Watershed.
 - Find sites where these considerations are maximized:
 - Ease of constructability- sites where retrofitting for GSI works with the layout of the site.
 - Availability of infrastructure- sites with nearby infrastructure that can be tied into (channels, pipes, etc.).
 - *Limit direct outfall into streets. This can exacerbate street maintenance issues.*
 - *Maintenance accessibility- select sites with sufficient access or where additional access can be obtained.*
- The San Antonio Water Systems noted site constraints on all potential implementation sites as part of the preliminary site selection. Sites were taken off the list based on their input, listed below:
 - 070-02 SAWS Turtle Creek primary pump station. Between the water tanks, water wells, the large underground piping and the service pumps this site is unusable.
 - 330-06 and 05 COSA detention basin. The whole site is upstream detention for Woodlawn lake flooding.
 - o 330-05 COSA park and detention basin.
 - o 330-02 Concrete drainage ditch, has big power lines running in middle of it.
 - o 310-01 SAWS Callaghan water tank very small site, water tank occupies 75% of property.
 - o 310-02 Large city owned park.
 - 150-04 Terrell Hills Almost all of lot is covered with building. Drainage infrastructure takes up the rest and there is a large impervious drainage area into the site.
 - 150-03 and 05 Pocket parks... really it is just a green area, but it all sits higher than the surrounding roads. Has playground equipment on one of them and a neighborhood garden on the other.
 - 150-02 there is a drainage on southside of property, but the football field takes up the rest of the green space.
 - o 150-01 site is flat, mostly soccer fields at elementary school.
 - 260-03 houses one of the SW permitted outfall test sites. Please leave out.
- The San Antonio Housing Authority expressed interest in implementing GSI on their properties.
- The City of San Antonio's Parks and Recreation Department has GSI outlined in their Master Plan and are interested in discussing the potential to implement GSI in the identified sites.

With that stakeholder feedback and additional River Authority staff input and site assessment by the Lockwood, Andrews & Newnam, Inc. (LAN) modeling team, one of the potential implementation sites was chosen to model in each of the eight subbasin. This process and outcome were documented in the Technical Memorandum for HSPF Modeling for BMP Performance Evaluation, Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP) Task 5. With the eight sites modeled with GSI BMPs, cost estimation, concept design and site scale drawings were performed on the sites.

The site GSI BMP modeling results, cost estimation, concept design and site scale drawings were presented at stakeholder workshops for the stakeholders/property owners of each site. Meeting notes, sign in sheet and outcomes are outlined below. The workshops were held virtually due to the COVID-19 pandemic. The property owners and stakeholder identified were outreached with the following email request.

I am reaching out to request feedback as part of the next phase of the Green Stormwater Infrastructure (GSI) Master Plan, an EPA/TCEQ 319 Grant. We are looking for feedback from property owner/stakeholders on the sites that were modeled with GSI best management practices for water quality improvements. I am looking to present the work done on [Brook Development Authority, City Public Works ROWs, City Parks and Recreation Department, and Terrell Heights Neighborhood Community Garden/Green Space, San Antonio Housing Authority] sites for feedback in a short virtual workshop. I have attached a brief presentation to give you a visual overview of the project and the sites. Please feel free to loop in others as you see fit.

Below is a summary of the grant project and outline of the virtual workshop.

The Upper SA River Watershed GSI Master Plan is an EPA/TCEQ Clean Water Act 319(h) Grant Project. The plan builds on recommendations made in the Upper SA River Watershed Protection Plan and Implementation Plan, Investments the River Authority has made in water quality models, and watershed master plan integration to develop a GSI Master Plan for the Upper SA River Watershed in Bexar County.

The River Authority is implementing this project to model select locations within targeted sub-watersheds to identify opportunities for implementing GSI and then to share outcomes with key stakeholders toward greater understanding of the opportunities, barriers, costs, etc. A priority is being given to space within public rights of way and/or on public lands. As I mentioned, the River Authority identified and modeled [four City parks, two Public ROWs, two SAHA Apts.] with GSI BMPs. I would like the opportunity to talk with you and other [City of San Antonio Public Works staff, Terrell Heights Community Members, City of San Antonio Parks and Recreations staff, Brooks Development Authority stakeholders, and San Antonio Housing Authority staff] whom you recommend, regarding the results and your thoughts about them.

Stakeholder Workshop Outline:

The purpose is to share the project with property owners and stakeholders to gather feedback and input on the work done to identify and model GSI/LID BMPs on public property as well as implementation potential.

- Overview of the GSI Master Plan EPA 319 Grant Project
- *Review GSI opportunities on site(s)*
- Provide an overview of the site's water quality modeling, triple bottom line analysis, and concept-level designs
- *Gather feedback on GSI feasibility, funding, and barriers as well as priority of the two potential projects.*

Workshop 1: Terrell Heights Neighborhood Association (THNA) Board on Site 150, City of San Antonio Right-Of-Way (ROW).

A virtual meeting was held for the Terrell Heights Community on April 6, 2021. A presentation was made to the Terrell Heights Neighborhood Association Board. In attendance was the president and other members of the board. The meeting invitation and updated presentation that was shared with the group are attached in Appendix E. The presentation was updated to include the yard signs and other

detailed GSI information the board requested to share with their neighborhood groups on NextDoor and Facebook. The presentation is attached in Appendix I.

The THNA Board and Community Garden lead requested signage to advertise the project to the community and gather feedback prior to a community meeting. The TNHA Board created a Survey and QR Code link to gather input on a set of questions I created for all stakeholders as well as a few of their own. The signage created for the ROW green space is shown in Appendix G.

The QR code in the signage is linked to the Terrell Heights Neighborhood Survey, pictured below. Survey participants were given access to the presentation as well as some additional questions and information provided by the THNA. The Terrell Heights Neighborhood Survey Image, Link, and Questions/Responses are in listed in the Appendix H.

The THNA Board and Community Gardening lead requested a follow up presentation to the community to share an overview of the project, discuss the feedback on the THNA Survey, and answer any questions. The invitation for the virtual meeting is pictured below. It was shared with the community in the form of a flyer, NextDoor App, and THNA Facebook post.

Workshop 2: City of San Antonio Public Works Department on Site 150 and Site 560.

A meeting was held on March 9, 2021 with Roberto Reyna, Capital Programs Manager, and staff from the Department of Public Works, and River Authority staff. The meeting invitation, agenda, and presentation are attached in Appendix I. Their input is summarized below.

The City of San Antonio's Public Works Department is interested in reviewing the ROW Terrell Heights community feedback, largely in support, as well as project details for potential implementation. Their goal is to align with the City's Water Quality Visioning Document and plan projects in the high priority subbasins, which this project is. In meeting with department director and managers to discuss opportunities they looked at the ROW opportunities relative to existing and future bond projects opportunities to add GSI BMPs.

Workshop 3: The Brooks Development Authority on Site 560.

A meeting was held on March 25, 2021, coordinated with Ana Gonzalez with the Brooks Development Authority, and attended by owners, members of the Brooks Development team, and their consultant, Pape-Dawson, and River Authority staff. A summary of their input is below. A list of participants and the presentation is in Appendix J.

The Brooks Development Authority stated that the Sydney Brooks and City-Base Landing site isn't an ideal candidate because it is a relatively new construction project. A separate meeting with the Brooks Development Authority, their consultants, and the landowner resulted in similar concerns with additional design and construction concerns due to it being in the center of the road. They are looking for opportunities similar to the three current San Antonio River Authority GSI/LID Rebate projects in Brooks.

Additional Workshops 4 & 5:

Additional Stakeholder Workshops/Meetings were held to ensure feedback was received from all site property owners and operators identified. They included the City of San Antonio's Parks and

Recreation Department and the San Antonio Housing Authority. Feedback from these two groups is recapped below.

Workshop 4: City of San Antonio Parks and Recreation Department on Sites 70, 310, 260, 270.

The City's Parks and Recreation Departments met with River Authority staff on March 31, 2021 to discuss the Park's sites; 70 - Windsor Park, 310 – Lee's Creek Park, 260 – Monterrey Park, 270 – Rosedale Park. COSA Parks expressed interested in implementing GSI on redevelopment and future projects. They looked for alignment with their priorities as well as current and future planned and bond projects. Meeting details are documented in Appendix K.

- 1. Site 70 Windsor Park has a plan for retrofitting. The current plan is to return an old tennis court in disrepair to native vegetation. This is a great opportunity to turn it instead into a GSI feature like the extended detention basins and bioswales modeled in this neighborhood park.
- 2. Site 310 Lee's Creek Park has had recent investment and use plans that may be an opportunity to work with the Public Works Department to fund the GSI with grant, bond, and/or other funding opportunities.
- 3. Site 260 Monterrey Park, may be an opportunity to incorporate GSI with the trail head bond work being planned.
- 4. Site 270 Rosedale Park currently has no upcoming work considered. When future work is planned GSI opportunities will be considered.

Workshop 5: San Antonio Housing Authority on Sites 330 and 420.

A meeting with the San Antonio Housing Authority on May 4, 2021 revealed that SAHA is interested in incorporating GSI BMPs in future projects if their private partners are also interested. They are willing to discuss retrofitting existing projects internally as funding is available. Meeting details are documented in Appendix L.

- 1. Site 330 San Antonio Housing Authority's Pin Oak II Apartments will be discussed with their Asset and Property Management Departments. SAHA is interested in implementing GSI in future funded construction projects. Due to funding allocation processes it is easier for them to build GSI into design plans at the start of a project as opposed to a retrofit project.
- 2. Site 420 San Antonio Housing Authority's Tampico Street Apartments is currently in construction and the real estate transaction is closed, so it is not possible to implement the proposed GSI BMP features at this time. It could be part of future retrofit conversations with asset and property management departments. SAHA is interested in implementing GSI in future development in coordination with their private partners and the River Authority.

Appendix A. Subtask 3.2 – Dataset of Potential GSI Projects

Desktop Analysis of Geospatial Data (Task 1- Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP))

The desktop analysis of geospatial data used a multi-criteria evaluation for site suitability process to identify the top five most suitable sites in each high priority subbasin. The evaluation was based on the following spatial datasets, also called geographic units (source provided in parenthesis):

- Bexar Land Use and Land Cover (Merrick)
- High priority subbasins: GSI subbasins (San Antonio River Authority, 2019h.)
- Upper San Antonio River Watershed Boundary (USGS)
- Soils (NRCS)
- Available Land (San Antonio River Authority, 2019h)
- Stream Centerlines (Federal Emergency Management Agency, FEMA)
- Flood risk *Damage Centers* (San Antonio River Authority, 2013)
- Storm drain inlets and drainage channels (City of San Antonio, COSA)
- Future bond projects (COSA)

Using ArcGIS Pro, version 2.2.1 (update version 2.5.1), the Available Land layer was overlaid with the other datasets. Areas with Available Land polygons greater than one acre belonging to public entities within the high priority subbasins were evaluated with the following criteria:

- Stream Centerlines (FEMA): located within 500 yards of a stream as defined by its centerline (preferred)
- Waterbodies (National Hydrography Dataset, NHD): located outside of waterbodies (required)
- Wetlands (National Wetlands Inventory, NWI): located outside of wetlands (required)
- Floodplains (FEMA): located outside of 1% annual chance floodplain (preferred)
- Flood risk Damage Centers (The River Authority): prioritized locations within flood risk damage centers (preferred)
- Open channels (COSA): potential green infrastructure opportunities, such as restoration areas (opportunity)
- Storm drain inlets (COSA): located within 500 yards of MS4 storm drain inlets (preferred)
- Future bond projects (COSA): located within future bond project area (preferred)
- Soils (NRCS): located on well-draining soils (hydrologic soil groups A and B) (preferred)
- Bexar Land Use and Land Cover (Merrick): located adjacent to a land use associated with high percentage of impervious cover including Commercial, Industrial, and Transportation (preferred)

Bullet points, above, are GIS Layers that can be found on the GSI Web Map, linked here: <u>https://arcg.is/lezmir.</u> They are also provided in a geodatabase packet, attached, all except for the FEMA layer, that is hosted by FEMA.

For every subbasin, at least five sites were selected based on these criteria with an emphasis on the size of the land available (one acre or larger), the property owner, and proximity of grey infrastructure to a site. With the list of sites, a polygon layer was created by digitizing pervious features on the ground using Nearmap Imagery (sub two-inch resolution) as reference. The polygon layer included the following attribute information: Subbasin ID, sarbcode (sarbcode is the name of the field, San Antonio River Basin (SARB) code is a land use code used for modeling), impervious, description, area (sq. miles), area (acres), soil, notes, and owner information. A site ID was created using the subbasin ID number and a simple number sequence, e.g. 150_01, 150_02, 150_03, etc. The process of selecting sites was a manual effort requiring professional judgement. Simple layer overlays and map cartography techniques were used to differentiate layers from one another and to highlight a specific attribute, i.e. sarbcode or property owner.

The available land was digitized to obtain an accurate representation of the area in acres.

File Names:

- GSI_USAR_sub150_Site_Locations
- GSI_USAR_sub260_Site_Locations
- GSI_USAR_sub270_Site_Locations
- GSI_USAR_sub310_Site_Locations
- GSI_USAR_sub330_Site_Locations
- GSI_USAR_sub420_Site_Locations
- GSI_USAR_sub560_Site_Locations
- GSI_USAR_sub70_Site_Locations

In addition, the following attribute information was captured: Name, SubbasinID, SARANotes, LANComments, SiteID, Consider. The Name field was derived by either researching the property using Google Maps or referencing the latest Bexar County Appraisal district parcel layer, Bexar Parcels (BCAD, 2017h). The fields SARANotes and LANComments, were created to house land characteristic descriptions such as, area is adjacent to major roadway or inlet is present on site. The Consider field was created to denote sites that may not be feasible due to its ability to fit within the criteria listed above. This information will be used in the feasibility assessment, next steps, to help narrow down the site selections, to one site per subbasin.

File Name: Site_selections

The following images are snapshots of what that process looked like visually.

Figure 1. Subbasin 70 (black outline) with the available land (green) overlaid.

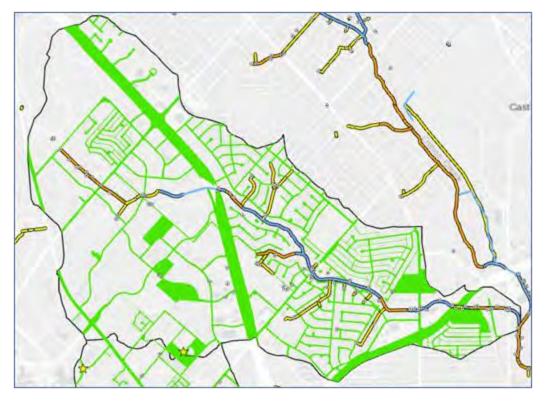


Figure 2. Subbasin 70 (black outline) with available land (green) coupled with layers from the SA River Authority's criteria.

Figure 3. Subbasin 70 (black outline) with available land (green) and layers from the SA River Authority criteria, with the site selection boundaries (red outline).

Simple layer overlays and map cartography techniques were used to differentiate layers from one another or highlight a specific attribute, i.e., sarbcode or property owner. Every subbasin had a high level of development which made it challenging to find available land larger than one acre, e.g., subbasin 150. Another challenge was finding a site in subbasins where the floodplain was predominant. For example, the floodplain bisects subbasin 260 and 270 which created a split in the amount of available land to select from. A total of 59 sites were selected across the eight subbasins, all of which were reviewed for additional comment.

Appendix B. Modeling Documentation – Pre-Modeling Checklist

TCEQ Nonpoint Source Program

Modeling Input Planning Checklist

(July 2017)

Purpose:

To facilitate communication between the modeling team, TCEQ, and stakeholders regarding inputs to the watershed model(s) being developed for stakeholder watershed-based planning. Feedback at the beginning of the process will help to get everyone on the same page and prevent issues down the road.

Goals:

- Ensure sufficient up-front planning conducted prior to jumping into modeling.
- Get stakeholder comments on model inputs at the beginning of the project rather than the end.
- Identify quality local sources, if available, rather than national or statewide sources.
- Have stakeholders "ground truth" modeling input data and assumptions for their watershed.
- Identify any significant data gaps and determine if necessary to collect the additional data or move on acknowledging data gap and having a work around.

QAPP Development:

This checklist should be filled out at the beginning of the modeling project in association with the development of the QAPP. This checklist is meant to compliment the QAPP planning process and does not replace the QAPP.

Review Process:

The contractor will submit the checklist to TCEQ for review. Once approved by TCEQ, the contractor will develop a presentation to present to stakeholders for their feedback regarding modeling inputs. Final adjustments to proposed inputs will be made and sent to TCEQ (stakeholders as well, if deemed necessary). Modeling can begin once QAPP executed and checklist approved by TCEQ.

<u>Notes:</u> This document only covers modeling of existing loadings and future loadings if no BMPs implemented. Future scenarios associated with implementation of BMPs are not covered. Not all inputs to a model are included in this checklist. There may be some questions or data that is not applicable to your project (e.g. calibration not necessary for SELECT model). It is okay to add N/A for questions if this is the case. It is difficult to create a "one size fits all" checklist so TCEQ Project Managers should review and make adjustments or additions to this checklist prior to sending to your contractor depending on your knowledge of the project.

Electronic File Backup Procedure

Describe your electronic file backup procedure. Include frequency. <u>(excerpted from the 90204_2.2</u> <u>Modeling QAPP)</u> >

Archives/Data Retention

Complete original data sets are archived on electronically and retained on-site by the San Antonio River Authority for a retention period specified in Table A9.1 Project Documents and Records.

The River Authority's backup system is based on Veeam Backup and Replication v9.5 software. This software runs on a virtual server in our data center and is closely integrated with VMWare vCenter Server. Our target storage device is a new DataDomain DD6300 data de-duplicating storage device. The way the system works is through taking snapshots at prescribed times throughout the day. These snapshots are saved in the DataDomain DD6300. All servers are backed up a minimum of once a day and file servers are backed up every 6 hours. Once a day file servers and financial servers are copy from the DataDomain DD6300 to our Disaster Recovery Center located at Martinez II Administration Office Data Center to another DataDomain. Once a month the system runs a full backup that is kept for a period of 12 months. At that point it is allowed to be overwritten if necessary. The system backs up servers by taking machine level snapshots and does not use file level backups and the Veeam server. Access to this server is limited to only specified IT personnel. The replication from one DataDomain to the other is through a proprietary protocol called DDBoost which encrypts the transmission and sends only de-duplicated data across the wire. This is inherently secure because only the DataDomains share the encryption database keys between themselves, so that only these two DataDomains can unlock the data.

San Antonio River Authority ARCHIVES POLICY

This policy provides guidance on staff management of records to be considered for the Archives (Archives) of the San Antonio River Authority (the River Authority). The River Authority's main Archives may be maintained by a qualified third party (the Repository) and is currently located at the Institute of Texan Cultures under the management of the University of Texas San Antonio Archives Department. A second Archives, consisting of documents frequently utilized by River Authority staff, is housed on-site in the Archives Room at the San Antonio River Authority's 100 E. Guenther Street location. https://saranet.sara-tx.org/wp-content/uploads/2018/06/policy_archives_final_20180516.pdf

Backup/Disaster Recovery

Electronic files are backed up using Veeam Backup and Replication software version 9.5 which runs on a virtual server in the River Authority's data center and is closely integrated with VMWare vCenter Server. The target storage device is a DataDomain DD6300 data de-duplicating storage device.

- All servers are backed up a minimum of once a day
- File servers are backed up every 6 hours. The project folder resides on a file server and will be backed up at this frequency.

Once a day file servers and financial servers are copied from the DataDomain DD6300 to our Disaster Recovery Center located at Martinez II Administration Office Data Center to another DataDomain. This is performed through a proprietary protocol called DDBoost which encrypts the transmission and sends only de-duplicated data across the wire. This is inherently secure because only the DataDomains share the encryption database keys between themselves, so that only these two DataDomains can unlock the data.

Once a month the system runs a full backup that is kept for a period of 12 months. The system backs up servers by taking machine level snapshots and does not use file level backups. The Veeam server maintains a database of these snapshots so access to these files can only be done through the Veeam server. Access to this server is limited to only specified IT personnel.

To recover files, the team member should submit an IT Helpdesk Ticket. The files can be recovered immediately to the version that was backed-up within the last 6 hours.

Elevation Data

Source: <u><fu< u=""></fu<></u>	UGRO>	Resolution:	<1-Foot>	Notes:	< >	
---------------------------------	-------	-------------	----------	--------	-----	--

Is the topography of the watershed relatively flat such as in the coastal plain? Yes \Box No \boxtimes

If yes, briefly explain general flow patterns in the watershed and justify the elevation source selected as being adequate to capture these flow patterns. $\leq N/A \geq 10^{-10}$

Are there instances of normal flow direction being reversed in the watershed? Yes \Box No 🛛 Maybe \Box

If yes or maybe, please explain. $\leq N/A >$

Is LIDAR being used? Yes \boxtimes No \square If not, please explain why. $\leq N/A$

Watershed Boundary

Source or Method: ≤The source is described in: San Antonio River Authority, 2019g.Notes:HSPF Modeling for Water Quality Master Planning of Salado Creek, Upper San Antonio<</td>River, and Leon Creek Watersheds. Nonpoint Urban Runoff Modeling and BMPStrategies- Volume V. Report developed for the San Antonio River Authority, SanAntonio, Texas, March 31, 2019>

What method or tool was used or will be used to delineate the watershed boundary? <Arc Hydro or similar GIS tool supplemented with manual delineation.> Briefly explain. <Arc Hydro or similar GIS tool will be used to delineate the drainage areas for the selected BMP sites using the high-resolution DEM data. The delineated drainage areas will be reviewed and manually adjusted as needed to take into account features such as storm sewer systems.>

Are there flood or irrigation control measures such as flood gates that can be open or shut in the watershed? Yes \Box No \boxtimes Maybe \Box

If Yes or maybe, how are these controls being taken into account during the watershed boundary delineation? $\leq N/A \geq$

Are there any areas in the watershed that do not behave as a typical watershed such as a sink? E.g. stream losses in Edwards aquifer recharge area. Yes \Box No \Box Maybe \boxtimes

If yes or maybe, how are these being taken into account in the model? \leq

Has this boundary been reviewed by the local drainage district? Yes ⊠No □

Land Use or Landcover

Source: <a>San Antonio River Authority>	Year:	Notes: <a> <hr/> <h< th=""></h<>
	<u><2017_></u>	update the landuse in the HSPF model.>

Land Use or Landcover (LULC) is extremely important to modeling overland flow and NPS loadings to the waterbody. Different land uses will have different flow and time of concentration factors built into the model. NPS pollutants must also be distributed over appropriate land uses in the watershed (e.g. normally livestock input into the model would not be distributed on urban land). Accurate and up-to-date LULC classifications are vital.

Does the LULC source selected sufficiently reflect the actual land uses of the watershed? <a>

What are some potential issues that you see with the source (e.g. not a recent date, misclassifications noticed, finer scale resolution needed, etc.)? $\leq No \geq$

Has there been significant development or land use changes in the watershed since the LULC source was published? <a>

Should revisions/refinement of the selected source or a local LULC watershed study be considered before proceeding with modeling? <u><No></u>

Please fill in the table for the land uses within the watershed. Also, please attach a LULC watershed map.

This information will be provided in the future with the modeling documentation.

Land Cover	Acres	% of Watershed Total
11	<mark>4670.872</mark>	<mark>4.923955</mark>
12	8107.564	<mark>8.546858</mark>
21	1732.299	<mark>1.82616</mark>
22	<mark>652.693</mark>	<mark>0.688058</mark>
23	10646.11	11.22295
24	23961.19	<mark>25.25948</mark>
25	3135.037	<mark>3.304903</mark>
31	16085.98	<mark>16.95757</mark>
<mark>41</mark>	4214.319	<mark>4.442664</mark>
51	15866.66	<mark>16.72636</mark>
<mark>61</mark>	473.0212	<mark>0.498651</mark>
71	1947.84	2.05338
72	<mark>2186.904</mark>	<mark>2.305397</mark>
81	630.4236	<mark>0.664582</mark>
<mark>91</mark>	549.2627	<mark>0.579023</mark>

Flow Data (Add rows as needed)

Stream Location	Source	Time Period Available	Frequency	Notes
<u><multiple< u="">></multiple<></u>	< <u>USGS</u> >	< <u>_2007-2010</u> >		The base model is calibrated to USGS flow data. See San Antonio River Authority, 2019g. HSPF Modeling for Water Quality Master

		Planning of Salado
		Creek, Upper San
		Antonio River, and Leon
		Creek Watersheds.
		Nonpoint Urban Runoff
		Modeling and BMP
		Strategies-Volume V.
		Report developed for the
		San Antonio River
		Authority, San Antonio,
		Texas, March 31, 2019.

If no daily flow data is available, what is available? What impact does this have on the modeling effort? <No stream flow data is needed. "Workplan For Site-Scale Modeling (Task 5) item 6a of the QAPP says, "For one selected site, conduct GSSHA modeling and compare the GSSHA output hydrograph per landuse against the site-scale HSPF model output at the influent location to BMP. If inconsistent, then adjust the HSPF model hydrologic parameters in a calibration/validation process so that the HSPF output hydrograph can match the GSSHA ones. The calibrated hydrologic parameters will then be applied to the site-scale HSPF models of the remaining 7 sites.">

Note: If no flow data is available you may want to consider collecting flow data as initial step of project.

What is the time period the model will be calibrated to? <u><The modeling will use a design storm event.</u>>

Is there sufficient flow data for this period for calibration? <a>

Water Quality Data

Source(s): <u><tceq swqm<="" u=""> database></tceq></u>	Notes: <u><the base="" calibrated.="" is="" model="" see<="" u=""> San Antonio River Authority, 2019g. HSPF Modeling for Water Quality Master Planning of Salado Creek, Upper San Antonio River, and Leon Creek Watersheds. Nonpoint Urban Runoff Modeling and BMP Strategies-Volume V. Report developed for the</the></u>
	San Antonio River Authority, San Antonio, Texas, March 31, 2019.

Please list the parameters/Pollutants that will have modeled loadings to the water body. <a href="https://www.science.co.gov/s

Please note that all pollutants listed in the Texas Integrated Report in connection with impairments or concerns for the water body(s) need to be addressed in the WPP.

Is there sufficient data collected for each of the parameters being modeled? Yes No D Maybe D

If No or Maybe, what are the data gaps? $\leq N/A >$

Is there sufficient water quality data available for the calibration period? Yes 🛛 No 🗆 Maybe 🗖

Is there sufficient geographic distribution of water quality stations? Explain. <u><The base model is well</u> calibrated using available water quality data and the information can be found in San Antonio River Authority (2019g)>

Seasonal Variations

Are there significant seasonal variations to flow and inputs that need to be considered in the model? Yes \square No \boxtimes E.g. irrigation return flows during growing season, waterfowl migration, etc. If yes, please describe how these will be accounted for in the model. $\leq N/A \geq$

Is there spring flow in the watershed? Yes \boxtimes No \square Maybe \square

If Yes or Maybe, please describe Spring flow was considered in the base model. The information can be found in San Antonio River Authority (2019g). But spring flow is not expected to be relevant for the selected sites.>

Are there any atypical sources of flow in the watershed? Yes \Box No \boxtimes Maybe \Box

If Yes or Maybe, please describe $\leq N/A >$

Buffer Weighting

Do you plan to apply any buffer weighting? For example, pollutant sources nearer to the stream will be modeled with a higher likelihood of reaching the stream? Yes \Box No \boxtimes Maybe \Box

Please explain: <a>

<u>Not required in QAPP and not needed due to modeling site-scale already.></u>

Septic Systems

Will be included in Model? Yes □No ⊠

Source: <u><n a=""></n></u>	Notes: <u><base data="" due="" found<="" included="" model="" no="" ossf="" to="" u=""/>. Not required in QAPP and not expected to have septic systems in drainage areas of selected sites.></u>		
Failure Rate % and Source*: \leq	<u>N/A</u> >		
Pollutant Concentration and Source: < <u> N/A</u> >			
Land Uses applied to: < <u>N/A</u> >			
Method for calculating number in watershed: < <u>N/A</u> >			
Example Sources: 1) EPA national study in 2002 found failure rates averaged between 10-20% across U.S. (Onsite			

Wastewater Treatment Systems Manual 2002)

2) Texas average was found to be 12% according to <u>Texas On-Site Council Study</u>

*Local input from local designated representative and stakeholders is required; or provide justification for why it cannot be obtained.

Are locations of septic systems known? Yes □ No ⊠

If yes, briefly explain how locations of septic systems were identified. $\leq N/A >$

If no septic system locations available are you planning to collect this information? Yes 🗆 No 🛛

If not what will be your methodology for including septic systems in the model? \leq No OSSF data found during base model development and calibration >

Please justify the failure rate chosen. $\leq N/A$ _____

Dogs

Will be included in Model? Yes □No ⊠

Source: <u><n a=""></n></u>	Notes: ≤Not specifically modeled. The base model has been calibrated and the same loading parameters will be used. See San Antonio River Authority, 2019g. HSPF Modeling for Water Quality Master Planning of Salado Creek, Upper San Antonio River, and Leon Creek Watersheds. Nonpoint Urban Runoff Modeling and BMP Strategies-Volume V. Report developed for the San Antonio River Authority, San Antonio, Texas, March 31, 2019.>		
Pollutant Concentration: <u><_N/A</u>	<u>}</u>	Source: < <u>_N/A</u> >	
Number of houses in watershed: <u><n a=""></n></u>		Source: < <u>N/A></u>	
Percentage of homeowners pick	king up pet waste: <u><n a<="" u="">></n></u>	Source: < <u>N/A></u>	
Total calculated for watershed show work: < <u>N/A</u> >			
Land Uses applied to: 			

Example Source:

1) American Veterinary Medical Association's 2012 U.S. Pet Ownership & Demographics Sourcebook - 44% of households in Texas own dogs and average of 1.6 dogs in each house.

Are there a significant amount of stray dogs in the watershed? \leq Unknown >

Sanitary Sewer Overflows

Will be included in Model? Yes ⊠No □

Source: <sso base="" considered="" in="" model.<="" th="">Details in report "San Antonio River Authority,Notes:2019d.Isolation of Sanitary Sewer Overflows for HSPF Modeling of SARA Watersheds.<<SSONonpoint Urban Runoff Modeling and BMP Strategies- Volume IV.Report developed for theSan Antonio River Authority, San Antonio, Texas, March 31, 2019.><!--</th--></sso>				
Pollutant Concentration: < modeled using raw sewage	Source: <san antonio="" sy<="" td="" water=""><th>stem<u>></u></th></san>	stem <u>></u>		
<u>combined with runoff concentrations – see 2019g for</u> details >				
Land Uses applied to: < <u>SSO modeled as point sources into strea</u>	am directly >			
Method for calculating number in watershed: < <u>see 2019g</u>	Method for calculating number in watershed: < see 2019g >			
Example Sources and Guidance: TCEQ regional field office should have this information. It should contain system operator, duration of event, received date, volume of event, incident source, cause, receiving water body, and significance of incident. Obtain at least one year's worth of data. Concentrations can be obtained from EPA literature value for medium concentration EPA literature value for medium concentration <u>https://www.epa.gov/npdes/2004-npdes-cso-report-congress</u> SSOs are episodic rather than chronic load conditions, and therefore average volumes may underrepresent acute conditions. Stakeholders must decide whether to model SSOs as daily averages, or find alternate means of including them as peaking factors.				
2004 NPDES CSO Report to Congress shows 3 concentrations depending on type of weather.				

<u>https://www.epa.gov/npdes/2004-npdes-cso-report-congress</u>. I think the lower concentration during wet weather would be because inflow and infiltration to the system is likely higher and dilutes sewage.

SSO Fecal Coliform Concentration

The estimation considers the impacts on streams of three representative fecal coliform concentrations:

- Dilute wastewater, with a fecal coliform concentration of 500,000 counts per 100 mL (typical for a wet weather SSO).
- Medium strength wastewater, with a fecal coliform concentration of 10,000,000 counts per 100 mL (middle range for dry-weather SSOs).
- Concentrated wastewater, with a fecal coliform concentration of 1,000,000,000 counts per 100 mL (upper range for dry-weather SSOs).

The decay of fecal coliform bacteria was not included because the analysis was limited to the point of mixing where impacts are likely greatest, and did not consider effects, if any, as the bacteria moved downstream.

Are SSOs mainly related to infiltration and inflow due to episodic storm events or are there serious problems with the collection systems that may contain continuous leaks? \leq Both – see SAWS reports for details \geq

Sewer System GIS layers or maps

Do you plan to obtain sewer system maps and utilize for modeling SSOs or septic systems? Yes \Box No \boxtimes Maybe \Box

If so, please list the systems you will need to obtain data for. $\leq N/A \geq$

Wastewater Outfalls

Are there any local studies on wastewater outfall flow and concentration that you will be using or will you use the permit and associated data reported to TCEQ and EPA? \leq Yes, wastewater flows and concentrations used in calibration of base model, please see the report "San Antonio River Authority (2019g)">

Will the flow and concentrations input into the existing loadings model be at the max daily average permit level or the average reported levels? www.selfactureconditions-width www.selfactureconditions-width www.selfactureconditions-width www.selfactureconditions-width www.selfactureconditions-width www.selfactureconditions-width <a href="https://www.selfactureconditions-width-width <a href="https://www.selfactureconditions-width-w

Is there any current wastewater reuse or planned reuse in the future? Yes D No 🛛 NA

If so, how will this be taken into account in the model? \leq Any know WW reuse data incorporated into the base model during the calibration process >

How will future increases in water use be taken into account? $\leq Assume future WW at permitted levels$

Guidance for obtaining wastewater information.

ID Examples:

State ID: WQ0010475-002

EPA ID: TX0027782

FRS ID: 110009780521

Sources:

EPA ECHO - <u>https://echo.epa.gov/</u> Discharge data can be downloaded for WWTFs individually. Example webpage <u>https://echo.epa.gov/detailed-facility-report?fid=110009780521</u>

EPA ICIS – Can batch download WWTF reported discharge data. Must obtain permission to access. https://ssoprod.epa.gov/sso/jsp/ICIS_Login.jsp

TCEQ Wastewater Permit Query - <u>http://www1.tceq.texas.gov/wqpaq/</u> State ID required to pull permit information (e.g. WQ0010490002)

State Permit No.	WQ0010490002	Add
NO.	WQ0010490002	
	Remove	
Search	Clear AdvancedSearch	

Fertilizer Application

Will be included in Model? Yes □No ⊠

	ot specifically modeled in urban watersheds. d in the base model and calibrated to		
/ <u>A></u>	Source: < <u>N/A></u>		
Land Uses applied to: < <u>N/A</u> >			
	However, nutrients are simulated available data. > /A>		

Please briefly describe how this will be incorporated into the model. $\leq N/A \geq$

Will seasonal fluctuations be taken into account? $\leq N/A >$

Livestock (Repeat Table as needed)

Will be included in Model? Yes □No ⊠

Species: < <u>_ N/A</u> >					
Source: < <u>N/A</u> >	Notes: < <u><_N/A></u>				
Number and Density: < <u>_ N/A</u> _	Number and Density: < <u>N/A</u> Source: Source: < <u>N/A</u> >				
Pollutant Concentration: < <u>_N/</u>	Pollutant Concentration: <				
Land Uses applied to: 					
Method for calculating number in watershed: < <u>N/A</u> >					
Example Sources: 1) USDA National Agriculture Statistics Service County-level agricultural census data					

Deer

Will be included in Model? Yes □No ⊠

Source: $\leq N/A \geq$ Notes: $\leq N/A >$	
Number and Density: < <u><_N/A</u> >	Source: < <u>_N/A</u>
Pollutant Concentration: < <u>N/A></u>	Source: < <u>_N/A</u>
Land Uses applied to: < <u>N/A></u>	
Method for calculating number in watershed: $\leq N/A >$	
Example Sources: 1) Texas Parks and Wildlife Department Resource Manager office and get most up to date. 2) Local knowledge	ment Unit data for the area. Contact local

Feral Hogs

Will be included in Model? Yes □No ⊠

Source: < N/A	
Number and Density: < <u>N/A</u> >	Source: < <u>_ N/A></u>
Pollutant Concentration: < <u>_N/A</u> >	Source: < <u>_ N/A></u>
Land Uses applied to: < <u><_N/A></u>	
Method for calculating number in watershed: $\leq N/A $	
Example Sources:	
1) Texas AgriLife. A 2011 report by Texas A&M Institute	
Hog Density in Texas from reported studies ranged from	1.33 hogs/square mile to 2.45 hogs/square
mile. Had a 95% confidence interval.	
2) Local knowledge	

2) Local knowledge

Other Significant Wildlife (Repeat Table as needed)

Will be included in Model? Yes □No ⊠

Species: < <u>_N/A</u> >							
Source(s): $\leq N/A \geq$ Notes: $\leq N/A \geq$							
Number and Density: N/A Source:							
Pollutant Concentration: < <u>N/A</u> Source: < <u>N/A</u>							
Land Uses applied to: < <u><_N/A></u>							
Method for calculating number in watershed: < <u>N/A</u> >							

Are there other significant wildlife sources in the watershed that aren't listed in this checklist? Yes \square No \boxtimes (E.g. Arroyo Colorado watershed has Javelina and Nilgai.)

Please list other significant wildlife sources and whether you plan to include in model. N/A

Wildlife Unknown

Will be included in Model? Yes □No ☑

Source(s): <u>N/A</u>	Notes: <u>N/A</u>	
Pollutant Concentration: <u>< N/A</u>	>	Source: < <u>_N/A</u> >
Land Uses applied to: <u><_N/A_</u>	>	
Method for calculating number	in watershed: < <u>N/A</u> >	

Bacterial Source Tracking

Has bacterial source tracking been completed or is planned for the watershed being modeled?

Yes 🛛 No 🗆 If so, what did results show? < _ Please see the attached report titled, *Basin Wide and* County BST summaries . >

Is this information planned to support modeling in anyway? Yes D No 🛛

If yes, please explain. $\leq N/A >$

Urban Stormwater

Will be included in Model? Yes ⊠No □

Source: <a> See Report "San Antonio River	N/A		
<u>Authority (2019g) ></u>			
Pollutant Concentration: < <u>N/A</u>		Source: < <u>< N/A</u> >	

Are the pollutants of concern in the urban stormwater in the watershed? <a>

Do any of the Municipal Separate storm sewer systems collect water quality samples of their systems? Yes \boxtimes No \square If so, please describe data collected. < <u>MS4 data collected by SAWS at limited MS4</u> outfall locations. Data set considered but not specifically applied because the data set is too small and the <u>MS4 sampling locations are too limited for subwatershed-scale base model development and</u> calibration. >

Industrial Activity

Will be included in Model? Yes ⊠No □

Is there any significant industrial activity in the watershed that may contribute the pollutants of concern? Yes \boxtimes No \square Maybe \square If so, please describe. <u>< Permitted industrial wastewater contained in TCEQ</u> database were included as point source in the base model. > Are you able to obtain information on these sources and there contribution? Yes \boxtimes No \square Maybe \square If so, please describe. < Permitted industrial flows and self reporting data obtained from TCEQ. >

Illegal Dumping

Will be included in Model? Yes □No ☑

Source: <u><n a<="" u="">></n></u>	Notes: <u><n a<="" u="">></n></u>
Land Uses applied to: < <u>N/A</u>	<u>></u>
Method for calculating number	in watershed: < <u>< N/A</u> >

Where are the specific areas of concern in the watershed? $\leq N/A \geq$

Do the illegal dump sites usually contain trash that would contribute to pollutant of concern? $\leq N/A \geq 2$

Are their many dump sites near streams? $\leq N/A \geq$

Existing Ag Land Water Quality Management Plans

Will be included in Model? Yes □No ⊠

Source: <u><n a_=""></n></u>	Notes: <u><no agricultural="" expected="" in="" land="" significant="" u="" urban<=""> watersheds. ></no></u>
a	

Source:

This information can be obtained from the Texas State Soil and Water Conservation Board and the United States Department of Agriculture

Is there a significant number of acres in the watershed under a WQMP plan? Yes \Box No \Box

Please describe how this will be incorporated into the model. N/A

Major Existing BMPs

Are there any major existing BMPs that should be included in the model? Yes \Box No \boxtimes (e.g. large wetland filter system, instream aeration structures, etc.)

Please list the major existing BMPs that should be considered for incorporation into the model.

<u>N/A</u>

Future Scenario Baseline Modeling

Future scenario baseline modeling is the next step after existing baseline modeling. It is the scenario of what would happen if no new BMPs were implemented to reduce existing loadings. Future scenario baseline modeling should include projections of waste water treatment plant growth, water reuse projections, land use changes such as urban development, etc.

No Future scenario modeling will be conducted under this project.

How will future increases in water use be taken into account? <a>

How will land use be taken into account? <<u>__NA___</u>>

How will water reuse be takin into account? <<u>NA</u>>

Will anything else be taken into account? <<u>NA</u>>

Appendix C. Additional Details on the HSPF Modeling for BMP Performance Evaluation

Sensitivity Analyses

Sensitivity analyses were conducted to determine the effect of changing model input parameters or variables on the model outcome. Selected HSPF model parameters relevant in model calibration were changed by +/- 20% one at a time. The changes in model calibration statistics due to sensitivity analysis were then summarized and reviewed to identify sensitive model parameters and resulting statistics. Details of the calibration are documented in Attachment A, "Calibration of Site-Scale HSPF Model".

Hydrologic Parameters

During calibration, the HSPF hydrologic parameters were adjusted so that the flow hydrographs generated by HSPF at the inlet of the bioswale were as consistent with the Gridded Surface Subsurface Hydrologic Analysis (GGSHA) results as possible. Table M-1 below is the same as Table IV-1 in Attachment A. The table shows the relevant hydrologic parameters, the values adopted after the calibration process, and the typical and possible ranges of each parameter from BASINS Technical Note 6.

As discussed in the Attachment A, the values adopted after calibration are at the limits of the possible range. For the purpose of the sensitivity analyses, the parameters were adjusted $\pm 20\%$ even if the adjustments would result in the parameters falling outside the possible ranges.

HSPF	Description	Units	Typical	Range	Possible	Values	
Parameter	Description	Units	Min	Max	Min	Max	Adopted
LSUR	Length of overland flow	feet	50.0	150.0	50.0	250.0	250.0
SLSUR	Slope of overland flow plane	ft/ft	0.010	0.050	0.001	0.150	0.001
NSUR	Manning's n for overland flow	none	0.030	0.100	0.010	0.150	0.150
RETSC	Retention storage capacity	inches	0.030	0.100	0.010	0.300	0.300

Table M-1 HSPF IMPLND Model Parameters for Hydrology

The results of the sensitivity analyses are presented in Table M-2. The parameters LSUR, SLSUR, and NSUR affect routing but not the runoff volume. On the other hand, RETSC is a storage factor. Therefore, changes in RETSC resulted in changes in the runoff volume. Moreover, the peak flow also appears to be most sensitive to RETSC.

Table M-2 Sensitivity Run Results for Hydrologic Parameters

Variable	Units	GSSHA		HSPF								
			Calibration	LSUR -20%	LSUR +20%	SLSUR -20%	SLSUR +20%	NSUR -20%	NSUR +20%	RETSC -20%	RETSC +20%	
Runoff Volume	ac-ft	0.928	1.056	1.056	1.056	1.056	1.056	1.056	1.056	1.102	1.010	
Peak Flow	cfs	1.520	1.510	1.537	1.475	1.490	1.522	1.537	1.475	1.570	1.427	
			Difference o	ifference of HSPF results from GSSHA results								
Runoff Volume			13.79%	13.79%	13.79%	13.79%	13.79%	13.79%	13.79%	18.75%	8.84%	
Peak Flow			-0.66%	1.12%	-2.96%	-1.97%	0.13%	1.12%	-2.96%	3.29%	-6.12%	

EC Loading Parameters

In HSPF the loading from the drainage area is modeled as a buildup-washoff process. In the calibration, the loads calculated by HSPF were compared to the loads of the SUSTAINOPT input in the proof-ofconcept study. As discussed in the calibration memo, the relevant parameters for EC loads are the following IMPLND parameters:

- SQO is the initial storage of the constituent.
- ACQOP is the rate of accumulation of the constituent.
- SQOLIM is the maximum storage of the constituent.
- WSQOP is the rate of surface runoff which will remove 90 percent of stored constituent per hour.

The values adopted in the calibration are shown in Table M-3, which is Table V-1 in Attachment A. The initial storage was not considered in the sensitivity analyses because it was established by running the model with a repeated rainfall pattern of one wet day followed by three dry weeks until equilibrium was established.

			L	
Landuaa	SQO	ACQOP	SQOLIM	WSQOP
Landuse	(10 ⁶ /ac)	(10 ⁶ /ac-day)	(10 ⁶ /ac)	(in/hr)
Residential High	0.050	12,800	89,600	1.0
Commercial	0.050	6,400	44,800	1.0
Transportation	0.050	6,400	44,800	1.0

The results of the sensitivity analysis are presented in Table M-4. Model results are least sensitive to ACQOP. The most sensitive parameter seems to be SQOLIM since changing it by +/- 20% resulted in significant changes in total EC load, peak EC concentration and flow-weighted GM. WSQOP is also a sensitive parameter and seems to effect a larger change in peak EC concentration than SQOLIM.

Table M-4 Sensitivity Run Results for Watershed Load Parameters

Variables	Units	SUSTAINOPT	Site-Scale HSPF						
		Input	Calibration	ACQOP	ACQOP	SQOLIM	SQOLIM	WSQOP	WSQOP
				-20%	+20%	-20%	+20%	-20%	+20%
Total EC load	MPN	4.06E+11	4.21E+11	4.04E+11	4.30E+11	3.45E+11	4.89E+11	4.33E+11	4.07E+11
Peak EC concentration	MPN/dL	97,710	97,533	94,026	99,285	79,649	113,745	119,957	82,204
Flow-weighted GM EC	MPN/dL	30,948	23,068	22,122	23,596	18,951	26,785	20,027	24,578
			Difference of HSPF results from SUSTAINOPT Input						
Total EC load			3.65%	-0.45%	5.91%	-14.95%	20.50%	6.64%	0.18%
Peak EC concentration			-0.18%	-3.77%	1.61%	-18.49%	16.41%	22.77%	-15.87%
Flow-weighted GM EC			-25.46%	-28.52%	-23.76%	-38.76%	-13.45%	-35.29%	-20.59%

Findings

The sensitivity analysis results showed that RETSC (retention storage capacity) is the most sensitive hydrologic parameter and SQOLIM (maximum storage of the constituent) is the most sensitive parameter for calculating drainage area loads. Another parameter that typically would be important to model output EC levels is the decay coefficient. However, with the model calibration run having essentially all inflow to the bioswale lost through infiltration, changes in the decay coefficient would not affect the model results so it is not sensitive in this specific bioswale modeling.

Additional BMP Performance Evaluation

The workplan for site-scale modeling (Task 5) in the QAPP calls for specifying the retention capacity, inflow rate capacity, flow-through rate capacity, and load reduction of the BMPs. The load reduction in terms of percentage removal for each constituent and each site has been reported in the above sections. Retention capacity, inflow rate capacity, and flow-through rate capacity are presented in Table N-1. These are calculated based on the 4-year simulation.

Table N-1 Retention Capacity, Inflow Rate Capacity, and Flow-through Rate Capacity of BMP

Subbasin	BMP	WQV	Retention capacity	Peak inflow		Inflow rate	Peak outflow through BMP		Flow-through
			(Note 1)	(Not	te 2)	capacity	(Note 3)		rate capacity
		(ac-ft)		(ac-ft/hr)	(cfs)	(x WQV/hr)	(ac-ft/hr)	(cfs)	(x WQV/hr)
70	Bioswale N	0.0628	22.3%	0.0278	0.3363	0.4426	0.002868	0.03470	0.04567
70	Bioswale S	0.0518	22.8%	0.0224	0.2708	0.4320	0.002364	0.02860	0.04564
70	Extended Detention N	0.2487	0.6%	0.2687	3.2513	1.0804	0.005744	0.06950	0.02310
70	Extended Detention S	1.1350	0.5%	1.2264	14.8394	1.0805	0.026347	0.31880	0.02321
150	Bioretention	0.6069	8.2%	1.1592	14.0263	1.9100	0.031099	0.37630	0.05124
260	Bioretention N	0.2850	8.5%	0.5163	6.2472	1.8116	0.014521	0.17570	0.05095
260	Bioretention S	1.3969	8.6%	2.5092	30.3613	1.7963	0.071545	0.86569	0.05122
270	Bioretention	0.1731	9.7%	0.2711	3.2803	1.5661	0.008760	0.10600	0.05061
310	Bioswale	0.0189	10.0%	0.0260	0.3142	1.3741	0.000861	0.01042	0.04556
310	Bioretention	0.1758	9.1%	0.2925	3.5393	1.6638	0.008851	0.10710	0.05035
330	Bioretention N	0.0982	29.9%	0.1672	2.0231	1.7026	0.004893	0.05921	0.04983
330	Bioretention S	0.0882	8.9%	0.1477	1.7872	1.6746	0.004314	0.05220	0.04891
420	Bioretention W	0.0836	10.7%	0.1335	1.6154	1.5969	0.003530	0.04271	0.04222
420	Bioretention S	0.1069	8.0%	0.2554	3.0905	2.3892	0.004479	0.05420	0.04190
560	Bioswale	0.5708	76.6%	0.6155	7.4474	1.0783	0.025710	0.31109	0.04504

Notes:

1. Retention capacity is reported as the % of inflow volume removed in the 4-year simulation.

2. Peak inflow is the maximum hourly inflow of the 4-year simulation.

3. Peak outflow through BMP is the the maximum hourly outflow of the BMP excluding overflow. For bioretention/bioswale, this is essentially the filtration rate through the soil media. For extended detention, this is the orifice outflow.

The retention capacity refers to the flow removed by evapotranspiration and/or infiltration. Extended detention ponds have very low retention capacity because the water is only detained for a short time. For bioretention and bioswale, the underdrain layer was modeled to fill up and overflow. When the water level was below the top of the underdrain layer, the water was retained in the underdrain layer resulting in more evaporation.

For most of the bioretention/bioswale, no infiltration to the underlying soil was assumed because of HSG Type D soil. The retention capacities are typically about 8 to 10%. The bioswale in Subbasin 560 has a high retention capacity because an infiltration rate of 0.5 in/hr was used in the proof-of-concept modeling so that a substantial amount of flow infiltrated into the ground. Bioretention N of Subbasin 330 also has a higher than typical retention capacity because an infiltration rate of 0.1 in/hr was used for the HSG Type C soil. As discussed in Section E, the drainage areas for the bioswales in Subbasin 70 were determined proportionally from the area in the BMP Tool Database. However, the WQV in the BMP Tool Database was determined differently so that the bioswales in Subbasin 70 have larger WQV relative to the drainage area than the bioswale/bioretention in the other subbasins.

The inflow rate capacities are about one to two times WQV/hr. It was assumed that in detailed design the inlets would be sized to accommodate the expected peak flows. The bioswales in Subbasin 70 have lower inflow rate capacities because of the larger WQV relative to the drainage area as discussed above.

The flow-through rate capacities of bioswale/bioretention are typically between 0.04 and 0.05 WQV/hr and are mainly determined by the filtration rate of the soil media. The flow-through rate capacities of the extended detention ponds are lower and reflect the orifice flow.

BMP Inflow and Outflow Geometric Mean EC Levels

While very few, some of the results presented in this technical memorandum show the outflow geomean EC levels of a BMP being higher than the inflow levels. Some flow-weighted geomean EC levels also show similar results. One example is the Subbasin 70 Extended Detention N BMP where the inflow and outflow geomean EC levels are 72,383 and 72,668 #/dL, respectively, as listed in Table E-6. While the differences are small and may not be statistically significant, these "outflow EC levels higher than inflow EC levels higher than inflow EC levels."

Exhibit O-1 shows example inflow and outflow timeseries of Subbasin 70's Extended Detention N BMP, where the inflow and outflow geomean EC levels are 78,305 and 82,506 #/dL, respectively, during this period of storm events. The plot shows that the BMP outflow hydrograph maintain a period of higher flow than the inflow after the storm peaks due to the detention effect of the BMP. With relatively lower inflow concentration after storm peaks and with BMP designed to be filled with the rising limb of the hydrograph, the water detained by the BMP has higher concentration for a period of time. This detaining higher concentration runoff and releasing it later is a reason why the geomean EC levels at the outflow could be slightly higher than the inflow.

Another reason is due to the BMP allowing more evaporation that result in less outflow than inflow near the tail end of the hydrograph. With EC levels increasing when flow volume approaches zero, the outflow geomean EC level could be higher than the inflow.

The cycles or steps in the outflow hydrograph and EC timeseries shown in Exhibit O-1 are due to evaporation that occurs during the day from the detention basin BMP. The steps are also due to the HSPF model updating the storage of constituent on the land surface once a day (at the beginning of the day) to account for accumulation and removal. Another complicating effect is that HSPF stops simulating decay when the flow depth drops to very low.

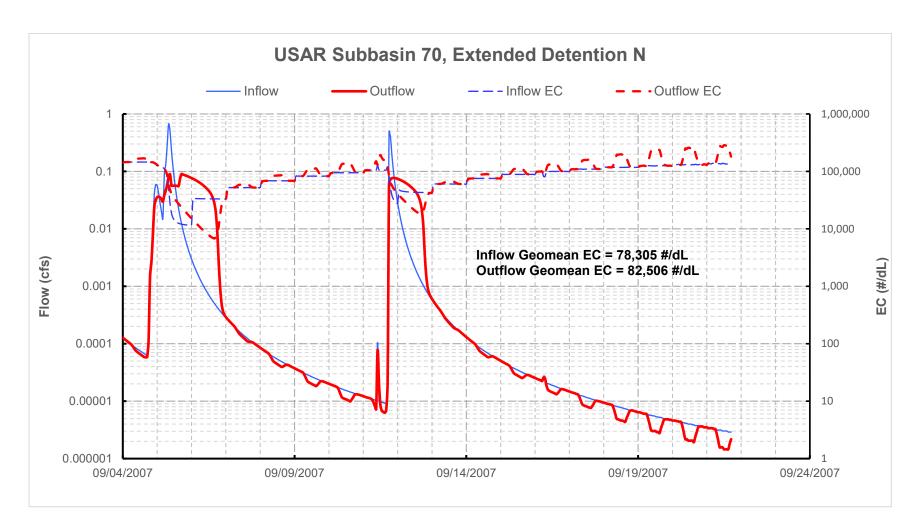


Exhibit O-1 Example BMP Outflow Geomean EC Levels Higher Than Inflow

Development of BMP Ranking Matrix

To assist with the selection of BMP site most suitable for modeling and performance evaluation, a BMP ranking matrix was developed using MS Excel. This ranking matrix is the first of its kind in San Antonio and it greatly helped with evaluation and selection of BMP sites within a subbasin. Attachment C provides a summary of the factors considered and the scoring involved in the BMP ranking process. Screen shots of an example BMP Ranking Matrix are also provided to the end of Attachment C.

References

City of San Antonio UDC LID. 2020. Code of Ordinances City of San Antonio, Texas, Chapter 35, Unified Development Code, January 29, 2020. https://library.municode.com/tx/san_antonio/codes/unified_development_code?nodeId=ARTIIUSPA_S3 <u>5-210LOIMDENACHDEPRLINC</u>.

Lockwood, Andrews & Newnam, Inc. 2019. Proof-of-Concept for Conducting Site-Scale Planning. Draft Technical Memorandum dated 08/17/2019.

San Antonio River Authority. 2019. Upper San Antonio River Watershed Protection Plan Implementation – Green Stormwater Infrastructure Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP). Revision date: 07/07/2020.

San Antonio River Authority. 2019. San Antonio River Basin Low Impact Development Technical Design Guidance Manual, Second Edition, May 2019.

U.S. Army Corps of Engineers. 2000. Hydrologic Modeling System HEC-HMS Technical Reference Manual, March 2000.

Attachment A Calibration of Site-Scale HSPF Model

Introduction

A site-scale HSPF modeling was conducted under the Upper San Antonio River (USAR) Watershed Protection Plan Implementation – Green Stormwater Infrastructure Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP). This project was sponsored by the Texas Commission on Environmental Quality (TCEQ) and the San Antonio River Authority (The River Authority), and the HSPF modeling effort was conducted by Lockwood, Andrews & Newnam, Inc. (LAN).

The effort involved developing conceptual green stormwater infrastructure (GSI) designs at eight selected subbasins within the USAR Watershed with one GSI site per subbasin. The subbasin-scale HSPF model was refined to perform site-scale water quality (WQ) modeling at each of these eight GSI sites. The HSPF model was set up to simulate *E. coli* (EC) bacteria, water temperature, dissolved oxygen (DO), carbonaceous biochemical oxygen demand (CBOD), nitrate nitrogen, ammonia nitrogen, organic nitrogen, total phosphorus, orthophosphorus, and total suspended solids (TSS). The target constituent and the focus of the model calibration effort is EC.

One of the eight GSI sites was selected for HSPF model calibration purpose. The calibration involved comparing the HSPF results against those obtained from the corresponding two-dimensional (2D) Gridded Surface Subsurface Hydrologic Analysis (GSSHA) modeling using the same site, as well as the modeling of the Best Management Practices (BMP) using the SARA Enhanced BMP Tool. The comparison allowed adjusting HSPF model parameters from subbasin-scale to site-scale so that similar HSPF modeling approaches and parameters can be applied to the remaining seven GSI sites. This technical memorandum documents the development of the site-scale HSPF model, the calibration process, and results.

The River Authority's Proof-of-Concept Site-Scale Study in 2019

The River Authority, LAN, and the University of Texas at San Antonio (UTSA, through Innovironmental Solutions, LLC) conducted a "Proof-of-Concept for Conducting Site-Scale Planning" study in 2019 that involved a combination of models for site-scale planning. The project utilized GSSHA for hydrologic simulation, HSPF for WQ calculations, and SUSTAINOPT for BMP simulation. SUSTAINOPT is the BMP simulation and optimization engine of SUSTAIN developed by EPA. Details of the Proof-of-Concept project can be found in the draft technical memorandum entitled "Proof-of-Concept for Conducting Site-Scale Planning" (LAN, 2019).

In the proof-of-concept study, a site was selected in the Brooks Creek Development Area located mostly in USAR subbasins 480, 540, and 560, as shown in Exhibit II-1. The BMP selected was bioswale, and their locations and drainage areas are shown in Exhibit II-2. The topography and GSSHA grids are shown in Exhibit II-3. The grid cell size was 10 m x 10 m, and the GSSHA simulation time step was 1 minute.

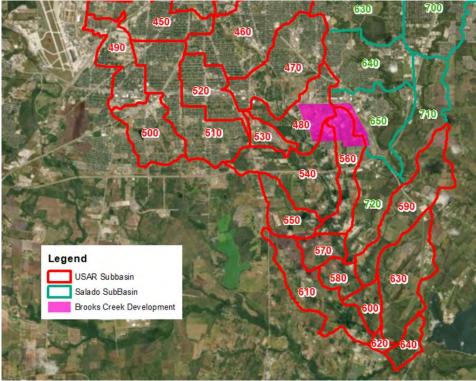


Exhibit II-1 Brooks Creek Development Area

A design storm was selected to conduct the proof-of-concept modeling based on the 1.8 inches per day (in/day) design rainfall defined in the River Authority's Low Impact Development (LID) Manual. Daily rainfall timeseries from Stations TX12961 and TX12970 were screened to show that three and four storm events at gages TX12961 and TX12970, respectively, had daily rainfall near 1.8 inches, as listed in Table II-1. Hourly rainfall patterns of these storm events were plotted to review hourly rainfall distributions, and the 4/30/2007 storm event was selected as a design storm because it has a smoother hyetograph and a cleaner three dry-day period after the event, as shown in Exhibit II-4.

In the proof-of-concept study, GSSHA was used to perform a 2D simulation of flows of the drainage areas. The flows computed by GSSHA were then input to HSPF to generate constituent wash-off loading timeseries. The flows from GSSHA and constituent loads from HSPF were then put into SUSTAINOPT to simulate the BMP process including flow routing and constituent removal through the BMP.

Exhibit II-2 Locations and Drainage Areas of BMPs Selected for Proof-of-Concept Study

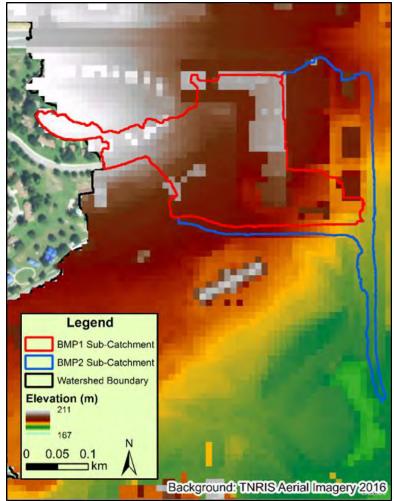


Exhibit II-3 Topography and GSSHA Grids

Date	TX12961	TX12970
03/30/07	1.83	0.65
03/11/07	3.28	1.76
03/13/07	0.44	1.71
04/30/07	0.30	1.81
06/27/07	1.84	0.17
02/03/10	1.61	1.81
09/07/10	1.73	6.25
	03/30/07 03/11/07 03/13/07 04/30/07 06/27/07 02/03/10	03/30/07 1.83 03/11/07 3.28 03/13/07 0.44 04/30/07 0.30 06/27/07 1.84 02/03/10 1.61

Table II-1 Screened Daily Rainfall Events from Stations TX12961 and TX12970

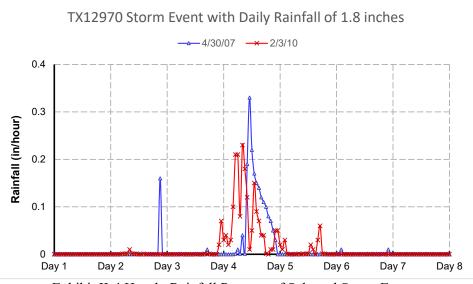


Exhibit II-4 Hourly Rainfall Patterns of Selected Storm Events

Overview of Site-Scale HSPF Model Calibration Process

It is recognized that GSSHA simulates 2D overland flow of a drainage area while HSPF is a lumpedparameter model. With this basic difference between the two models, the GSSHA results are considered more representative of a site-scale simulation. However, a 2D GSSHA modeling requires much substantial effort than HSPF including data collection, model set up, and model simulation time. Therefore, the purpose of the calibration is to allow adjusting HSPF model parameters to see if HSPF could generate similar results as GSSHA so as to allow conducting only HSPF simulations and avoid time-consuming and costly GSSHA modeling.

The site-scale model calibration was conducted by first creating a site-scale HSPF model for the same Brooks Creek Development Area BMP site as the 2019 proof-of-concept study by modifying the USAR subbasin-scale HSPF model. The modification included updating the land use characteristics in the model based on the data listed in Table III-1. The land use distribution and the impervious percentages listed in Table III-1 are the same as those used for the GSSHA modeling in the 2019 proof-of-concept study. As listed, commercial is the predominant land use in the drainage area to the BMP site. The bioswale BMP was then set up in the site-scale HSPF model using the RCHRES operation. The same 1.8 in/day design rainfall used in the proof-of-concept study was used in the site-scale HSPF modeling. The initial conditions of the model were developed by executing the model with a repeated rainfall pattern of one wet day (with the 1.8 in/day design storm) followed by three dry weeks until equilibrium was established.

Landuse	Total Area	Pervious	Impervious	%				
Lanuuse	(ac)	(ac)	(ac)	Impervious				
Undeveloped meadow	0.494	0.494	-	0.0%				
Residential	1.087	0.435	0.652	60.0%				
high density	1.007	0.100	0.002	00.070				
Commercial	11.490	4.826	6.664	58.0%				
Transportation	2.174	0.217	1.957	90.0%				
TOTAL	15.245	5.972	9.273	60.8%				

Table III-1 Land use Characteristics of Selected Site

The site-scale HSPF model calibration involved the following major steps:

- 1. Calibration of the HSPF hydrologic parameters so that the flow hydrograph generated by HSPF at the inlet of the bioswale were as consistent with the GSSHA-generated flow hydrograph as possible.
- 2. Calibration of the HSPF watershed water quality model parameters so that the timeseries of EC loads and concentrations at the inlet of the bioswale were as consistent with the input to SUSTAINOPT as possible.
- 3. Calibration of the HSPF RCHRES/BMP model parameters so that the HPSF-generated timeseries of EC loads and concentrations at the outfall of the BMP were as consistent with the SUSTAINOPT output as possible. At this step, in order to compare the results of the HSPF RCHRES/BMP simulation and the SUSTAINOPT simulation on the same basis, the same SUSTAINOPT input flows and EC loads were used as inputs to the HSPF RCHRES/BMP (instead of the flows and loads generated by HSPF from the drainage area).
- 4. As an additional calibration step, the flows and EC loads generated by HSPF from the drainage area were used as inputs to the HSPF RCHRES/BMP. The results were compared against the SUSTAINOPT output and those from Step 3 above. No adjustment to HSPF model parameters were made at this step.

The following sections provide a detailed discussion of these major calibration steps.

Calibration for Flow Hydrograph

The first step in the site-scale HSPF model calibration process was the calibration of the HSPF hydrologic parameters so that the flow hydrographs generated by HSPF at the inlet of the bioswale BMP were as consistent with the GSSHA results as possible. As listed in Table B7.1 of the QAPP, the criteria for hydrology calibration, i.e. acceptable differences between the hydrographs generated by GSSHA and HSPF, include the following:

• Error in storm volume: 15%

- Error in storm peak: 15% •
- Hydrographs to be similar. •

An investigation into the GSSHA modeling results found that most runoff were generated from the impervious surface of the drainage area. Therefore, HSPF model parameters associated with pervious surface (PERLND in HSPF) were found to be insensitive in the calibration process, i.e. changing these PERLND parameters have little effect on the resulting hydrograph. As a result, the original subbasin-scale HSPF model parameters for PERLND hydrology stayed unchanged in the site-scale HSPF model.

The hydrologic parameters for the impervious area (IMPLND in HSPF) and the values adopted after the calibration process are listed in Table IV-1, together with the typical and possible ranges of each parameter obtained from the BASINS Technical Note 6 (EPA, 2000). The values adopted are at the limits of the possible range that yielded the best match between the HSPF and GSSHA modeled hydrographs.

HSPF	Description	Units	Typical Range		Possible Range		Values	
Parameter	Description	Units	Min	Max	Min	Max	Adopted	
LSUR	Length of overland flow	feet	50.0	150.0	50.0	250.0	250.0	
SLSUR	Slope of overland flow plane	ft/ft	0.010	0.050	0.001	0.150	0.001	
NSUR	Manning's n for overland flow	none	0.030	0.100	0.010	0.150	0.150	
RETSC	Retention storage capacity	inches	0.030	0.100	0.010	0.300	0.300	

Table IV-1 HSPF IMPLND Model Parameters for Hydrology

The comparison between the GSSHA and site-scale HSPF model results are listed in Table IV-2. The difference in total runoff volume is 13.8%, which meets the 15% criterion. The peak flows are almost the same. The shape of the hydrographs are also similar, as shown in Exhibit IV-1, except for a 2-hour difference in the time of peak flow. This difference is due to the 2D GSSHA model involving more land surface routing resulting in longer time of concentration, while HSPF generates faster runoff response with the lack of detailed 2D effects. With BMP performance dominated by total runoff volume and peak flow through the BMP, this small difference in time to peak is not expected to affect BMP evaluation results. Overall, the results indicate a successful hydrologic calibration.

Table IV-2 Compar	rison bet	tween GSSH	A and HSP	F Hyd	lrology Res	sults
			0.1			

Variables	Units	GSSHA	Site-Scale HSPF	Difference
Runoff Volume	ac-ft	0.928	1.056	13.79%
Peak flow	cfs	1.520	1.510	0.66%

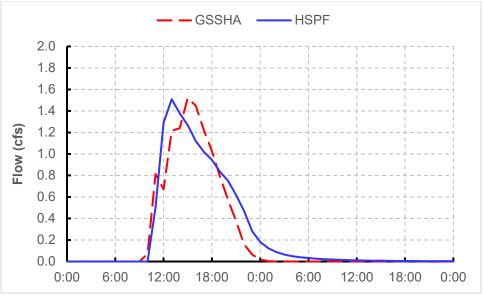


Exhibit IV-1 GSSHA and HSPF Flow Hydrographs to Bioswale

Calibration of Drainage Area Load Calculation

Following the hydrologic calibration, the next step was the calibration of the HSPF model water quality parameters so that the EC load and concentration at the inlet of the bioswale could be consistent with the SUSTAINOPT input. As listed in Table B7.2 of the QAPP, the criteria for bacteria calibration, i.e. difference between site-scale HSPF and SUSTAINOPT results, include the following:

- Error in bacteria concentrations:
 - Very Good, if <15%,
 - o Good, if between 15% and 25%, and
 - Fair, if between 25% and 35%.
- The timeseries plots should be similar.

While the criteria were intended for comparing average concentrations over a substantial period of simulation, the criteria were adopted to evaluate the comparison of total EC bacteria load, peak EC concentration, and flow-weighted geometric mean (GM) EC concentration.

Because the runoff was found to be mostly from the impervious area, the EC load was also found to be mainly from the impervious area. As a result, the HSPF PERLND parameters for EC simulation were found insensitive during the calibration effort and the parameters were kept the same as in the original subbasin-scale model. The HSPF IMPLND parameters for EC simulation and the values adopted after the calibration process are listed in Table V-1 where

- SQO is the initial storage of the constituent.
- ACQOP is the rate of accumulation of the constituent.
- SQOLIM is the maximum storage of the constituent.
- WSQOP is the rate of surface runoff which will remove 90 percent of stored constituent per hour.

Landuaa	SQO	ACQOP	SQOLIM	WSQOP
Landuse	(10 ⁶ /ac)	(10 ⁶ /ac-day)	(10 ⁶ /ac)	(in/hr)
Residential High	0.050	12,800	89,600	1.0
Commercial	0.050	6,400	44,800	1.0
Transportation	0.050	6,400	44,800	1.0

Table V-1 HSPF IMPLND Model Parameters and Adopted Values for EC Calibration

Table V-2 lists the comparison between the calibrated site-scale HSPF model results and the SUSTAINOPT input values. Both the total EC load and peak EC concentration comparisons are "very good" and the flow-weighted GM EC comparison is "good/fair" per the calibration criteria. Exhibit V-1 shows the EC concentration timeseries of the HSPF model and SUSTAINOPT input at the inlet of the bioswale. Overall, the results indicate a successful EC calibration at the inlet of the bioswale.

Table V-2 Comparison of EC Loads and Concentrations at Inlet of Bioswale

Variables	Units	SUSTAINOPT Input	Site-Scale HSPF	Difference	Results
Total EC load	MPN	4.06E+11	4.21E+11	3.69%	Very Good
Peak EC concentration	MPN/dL	97,710	97,532	0.18%	Very Good
Flow-weighted GM EC	MPN/dL	30,954	23,068	25.48%	Good/Fair

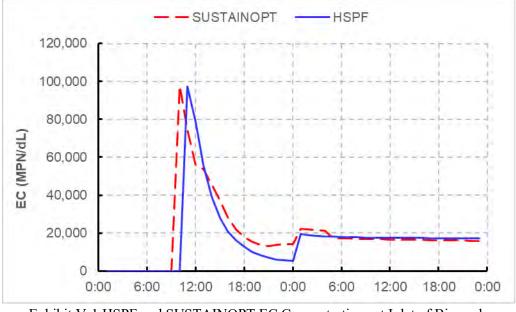


Exhibit V-1 HSPF and SUSTAINOPT EC Concentrations at Inlet of Bioswale

Calibration of RCHRES Representing Bioswale with SUSTAINOPT Input

After calibrating both flows and EC loads entering the bioswale, the next step was to conduct calibration at the BMP outfall to verify that the HPSF results were consistent with the SUSTAINOPT output. In this step, the flows and EC loads computed by HSPF from the drainage area were not used. Instead, the SUSTAINOPT input flows and loads were used as inputs to the BMP in the HSPF simulation so that the comparison would be on the same basis, i.e., based on the same inputs to the HSPF BMP and SUSTAINOPT to ensure that any differences at the BMP outfall would be attributed only to the BMP simulations by the models.

Exhibit VI-1 illustrates how the inflow to the BMP is simulated. The bioswale BMP is set up as an offline BMP, i.e. the BMP is to capture, isolate, and treat only the inflow volume from the drainage area used to size its capacity, e.g. the impervious surface from the commercial, transportation, and residential land uses, and the remaining inflow will bypass the BMP and will not be captured or treated by the BMP. A bioswale BMP is also depicted as two layers. The upper layer consists of the volume of the swale and the void space of the soil media. The lower layer is the void space of the gravel underdrain layer. The total inflow (Q_{in}) from the drainage area was split into two components—bypass flow (Q_{bypass}) and flow entering the upper layer of the bioswale (Q_{BMP}). The flow entering the upper layer infiltrates into the lower layer. Subsequently part of it infiltrates into the ground (Q_{Infil}) and the rest is the outflow from the underdrain layer (Q_{Und}), which combines with the bypass flow to become the total outflow (Q_{out}). In the site-scale HSPF model, the upper and lower layers of the bioswale were modeled as separate reaches (RCHRES 1 and RCHRES 2), and rating relations or FTABLEs were developed to represent their volumes and outflow characteristics.

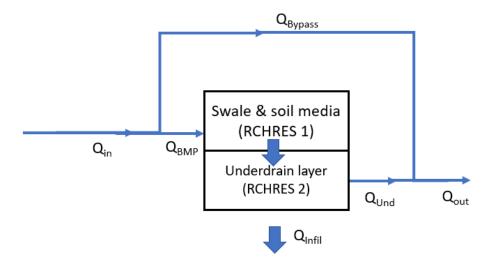


Exhibit VI-1 Illustration of an Offline Bioswale BMP

Due to the setting of capturing and isolating inflow only to its capacity, the SUSTAINOPT simulation during the proof-of-concept study resulted in almost all of the flow entering the bioswale infiltrated into the ground, i.e., Q_{Und} was almost zero. Therefore, the FTABLEs in the site-scale HSPF model were set up

to reproduce this result. In this case, Q_{Out} and the associated concentration were basically the same as Q_{bypass} , and the concentration of the bypass flow was the same as the inflow. In this situation where the flow into the BMP was almost entirely infiltrated into the ground, the concentration of the outflow of the system was essentially the same as the concentration of the inflow to the system, and the load reduction achieved by the BMP is entirely from removing the EC load in the infiltrated flow. As a result, the decay process in the BMP is 100% for the flow and load that enters the BMP, but it did not have any effect on the load and concentration of the total outflow that is entirely bypass flow. Therefore, the decay coefficient of the BMP was not adjusted during the calibration, i.e., the coefficient was kept the same as in the subbasin-scale HSPF model. Table VI-1 and Exhibit VI-2 show that there is very good agreement between the SUSTAINOPT output and the HSPF model results.

Table VI-1 Comparison between SUSTAINOPT and HSPF BMP Simulation Results (SUSTAINOPT Input Used as Input to HSPF BMP)

Variables	Units	SUSTAINOPT Output	Site-Scale HSPF	Difference	Results
Total EC load	MPN	3.17E+11	3.15E+11	0.63%	Very Good
Peak EC concentration	MPN/dL	97,895	97,908	0.01%	Very Good
Flow-weighted GM EC	MPN/dL	30,004	31,323	4.40%	Very Good

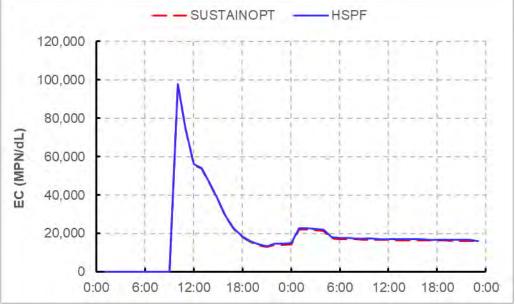


Exhibit VI-2 HSPF and SUSTAINOPT EC Concentrations at Outlet of Bioswale (SUSTAINOPT Input Used as Input to HSPF BMP)

Calibration of RCHRES Representing Bioswale with HSPF Input

In this step, the flows and loads computed by HSPF from the drainage area were routed through the RCHRESs representing the bioswale, and the results were compared against the SUSTAINOPT output.

The purpose of this calibration step is to evaluate the difference at the BMP outfall location between the results from the 2D GSSHA modeling for drainage area coupled with SUSTAINOPT modeling for BMP versus the site-scale HSPF that includes both the drainage area and BMP simulations.

In the proof-of-concept study, the results of SUSTAINOPT simulation showed that 22.9% of the total inflow from the drainage area entered the offline bioswale BMP, and the remaining hydrograph bypassed the BMP. This 0.229 fraction was applied to the HSPF flow to split the inflow (Q_{in}) into the bypass flow (Q_{bypass}) and the flow entering the upper layer of the bioswale (Q_{BMP}), i.e. $Q_{BMP} = 0.229 \text{ x } Q_{in}$.

Because almost all of the flow into the BMP infiltrated the ground, in either the HSPF or the SUSTAINOPT simulation, the inflow and outflow concentrations are essentially the same. Therefore, as shown in Table VII-1 and Exhibit VII-1, the agreement between HSPF and SUSTAINOPT outflow loads and concentrations is very good, and the results are similar to that between HSPF and SUSTAINOPT inflow loads and concentrations (see Table V-2 and Exhibit V-1).

Table VII-1 Comparison between SUSTAINOPT and HSPF BMP Simulation Results (HSPF Flows and Loads from Drainage Area Used as Input to HSPF BMP)

Variables	Units	SUSTAINOPT Output	Site-Scale HSPF	Difference	Results
Total EC load	MPN	3.17E+11	3.24E+11	2.21%	Very Good
Peak EC concentration	MPN/dL	97,895	97,533	0.37%	Very Good
Flow-weighted GM EC	MPN/dL	30,004	23,068	23.12%	Good

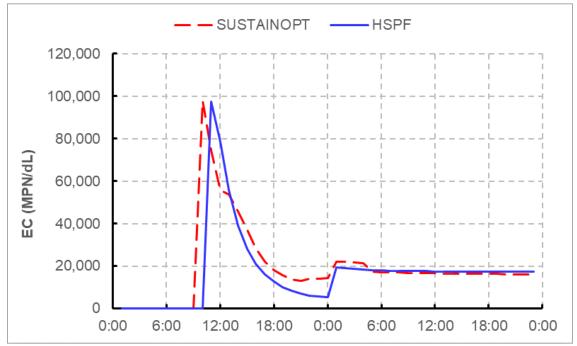


Exhibit VII-1 HSPF and SUSTAINOPT EC Concentrations at Outlet of Bioswale (HSPF Flows and Loads from Drainage Area Used as Input to HSPF BMP)

Inline BMP

The SUSTAINOPT simulation and the site-scale HSPF simulation discussed in previous sections involves an offline BMP. In this section, the same BMP was simulated in HSPF as an inline BMP to evaluate the difference between an offline and an inline system. While this is not a calibration step, the results provide additional information to facilitate subsequent modeling efforts that may involve inline BMP systems. Exhibit VIII-1 illustrates an inline BMP where there is no bypass, i.e. all inflow is pushed through the BMP. However, in addition to the underdrain outflow (Q_{Und}), there is an overflow from the upper layer (Q_{OF}).

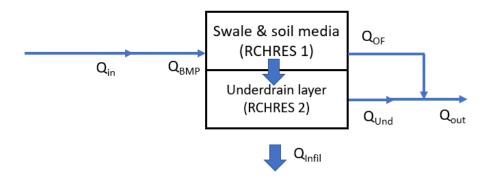


Exhibit VIII-1 Illustration of an Inline Bioswale BMP

Table VIII-1 shows the comparison of results between the inline and offline BMPs and Exhibit VIII-2 shows the EC concentrations. There are several reasons for the higher load and concentration reduction from the inline BMP. First, all flow went through an inline BMP (instead of only 0.229 of the flow being diverted, captured, and treated in the offline case), resulting in more flow being detained and infiltrated into the ground and therefore more EC load was removed. Secondly, with the entire hydrograph flowing through an inline BMP, more EC load was removed by the BMP treatment/decay process. Note that Exhibit VIII-2 shows an increase in EC concentration after Hour 0:00 of Day 2 when the diverted flow became very small (concentrations tend to go high when flow approaches zero).

Variables	Units	Offline BMP	Inline BMP	Difference
Total EC load	MPN	3.24E+11	1.33E+11	58.95%
Peak EC concentration	MPN/dL	97,533	31,117	68.10%
Flow-weighted GM EC	MPN/dL	23,068	14,617	36.64%

Table VIII-1 Comparison between Offline and Inline HSPF BMP Simulation Results

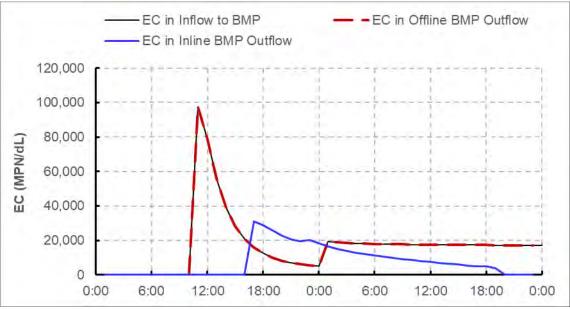


Exhibit VIII-2 EC Concentrations of Inline/Offline Bioswale Simulated by HSPF

Exhibit VIII-3 shows the flow timeseries simulated by the site-scale HSPF model for both the inline and offline bioswale scenarios. The plot shows that the total flow from the drainage area got split into a diverted flow into the offline bioswale and bypass flow components, and the bypass flow becomes the outflow from the offline BMP because the diverted flow got infiltrated completely. This resulted in the outflow EC concentrations being the same as the bypass EC concentrations.

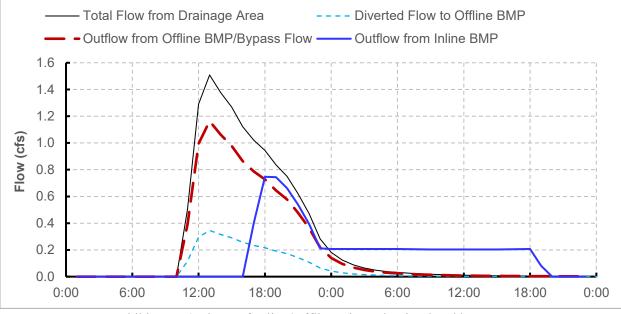


Exhibit VIII-3 Flows of Inline/Offline Bioswale Simulated by HSPF

For the inline bioswale scenario, the outflow hydrograph in Exhibit VIII-3 shows no outflow from the BMP when inflow was still filling up the BMP and part of the inflow was infiltrated. When the BMP was full (at Hour 16:00), then outflow from the inline BMP started to occur. Due to the detention effect of the

BMP, it slowly drained dry as shown by the long tail end of the hydrograph. This extended detention provided additional EC load removal.

Conclusion

Using an example bioswale BMP developed for the Brooks Creek Development Area under a 2019 proofof-concept study, site-scale HSPF models were developed from the USAR subbasin-scale model. The models were then calibrated successfully to the hydrologic and EC results of the GSSHA and SUSTAINOPT modeling conducted under the proof-of-concept study.

The results presented in this memorandum are reasonable and expected, indicating that the site-scale HSPF models can perform well in simulating BMP flow and EC removal processes. The results also suggest that an inline BMP may provide more EC load removal than an offline BMP when the inflow is well mixed from all land uses of drainage area and when the offline BMP is designed to treat only a small portion of the total inflow.

On the other hand, if there were substantial differences among runoff EC loads from various pervious and impervious land uses and if the first flush effect were also substantial, then diverting only first flush runoff from impervious surfaces into an offline BMP would be most effective and beneficial because the most contaminated runoff volume can be isolated and treated.

As described in the QAPP, the parameters of the calibrated site-scale HSPF model was used to conduct additional modeling of the other selected BMP sites for evaluating the performance of conceptual GSI designs. When BMPs other than bioswale were selected, necessary adjustments to the models will also be made by utilizing the decay coefficient of the selected BMP types from the River Authority's BMP Database.

References

Lockwood, Andrews & Newnam, Inc. (LAN). 2019. Proof-of-Concept for Conducting Site-Scale Planning. Draft Technical Memorandum dated 08/17/2019.

San Antonio River Authority (SARA). 2019. Upper San Antonio River Watershed Protection Plan Implementation – Green Stormwater Infrastructure Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP). Revision date: 09/17/2019.

U.S. Environmental Protection Agency. 2000. BASINS Technical Note 6, Estimating Hydrology and Hydraulic Parameters for HSPF. EPA-823-R00-012.

Attachment B

Modifications to Watershed HSPF Models to Create Site-Scale Model for BMP Performance Evaluation in USAR Subbasin 70

- 1. Added RCHRES for the BMP simulation in the OPN SEQUENCE block. Note that:
 - a. RCHRES 73 is a dummy reach, i.e. not a physical water body, to combine the outflows from the RCHRES of Bioswale N (71 and 72),
 - b. RCHRES 77 is a dummy reach to combine the outflows from the RCHRES of Bioswale S (75 and 76), and
 - c. RCHRES 79 is a dummy reach combining the outflows from all four BMPs.

```
*** Subbasin 70 site-scale model
*** 71 - Bioswale N, above underdrain
*** 72 - Bioswale N, underdrain
*** 73 - Bioswale N, total outflow
*** 74 - Extended detention N
*** 75 - Bioswale S, above underdrain
*** 76 - Bioswale S, underdrain
*** 77 - Bioswale S, total outflow
*** 78 - Extended detention S
*** 79 - All BMP outflow combined
      RCHRES
                    71
      RCHRES
                    72
      RCHRES
                    73
      RCHRES
                    74
      RCHRES
                    75
      RCHRES
                    76
      RCHRES
                    77
      RCHRES
                    78
      RCHRES
                    79
```

2. Updated IWATER parameters (hydrologic parameters for impervious area in drainage area) based on model calibration.

IWAT-PARM2				
*** <ils></ils>	LSUR	SLSUR	NSUR	RETSC
*** X - X	(ft)			(in)
103 117	150	0.0281	0.10	0.20
203 217	150	0.0219	0.10	0.20
303 317	150	0.0138	0.10	0.20
*** 403 417	150	0.0187	0.10	0.20
*** site-scale	model			
403 417	250	0.0010	0.15	0.30

END IWAT-PAR	12			

3. Updated IQUAL parameters (water quality parameters for impervious area in drainage area) based on model calibration.

	∗∗ Subba⊴	in 70 sit	te-scal	le mod	lel					
*	405 406	0.05 0.05		0 1 0	2800 6400	896 448		1		
	400 407	0.05		0 0	0400 6400	440		1		
*	**	0.05		0	0400	440				
	410	0.05		0	4000	286	00	1		
	411	0.05		0	1000	78	00	1		
4. Added RC	HRES 71 to	79 in the G	eneral I	nput un	der the	RCHR	ES blo	ock.		
				1						
RCHRES										
ACTIVITY										
*** RCHRES	Active s	ections								
	YFG ADFG	CNFG HTF	G SDFG	GQFG	OXFG	NUFG	PKFG	PHFG		
10 70	1 2		1 1		1	1	1	0		
71 79	1 2		1 1		0	0	0	0		
80 640 END ACTIU	1 2	0	1 1	1	1	1	1	0		
END ACTIVI	IY									
PRINT-INFO										
	Printout	level fl	aqs							
		CONS HEA		GQL	OXRX	NUTR	PLNK	РНСВ	PIUL	PYR
10 70	4 4	4	4 4	4	4	4	4	4	1	9
71 79	4 4	•	4 4	-	4	4	4	4	1	9
80 640	4 4	4	4 4	4	4	4	4	4	1	9
END PRINT-	INFO									
BINARY-INF	0									
		utput lev	el fla	ns						
		CONS HEA			OXRX	NIITR	PI NK	РНСВ	PTUI	PYR
10 70	6 6		6 6	-	6	6	6	6	1	9
71 79	2 2		2 2		2	2	2	2	1	9
80 640	ó ó		66		6	6	6	6	1	9
END BINARY										

***	Name	Nexits	Unit Sys	tems	Pr:	inter			
*** RCI	HRES		t-ser			Metr	LKFG		
*** X -	- x		in	out	2				
10	WForkOC_UpDetail	2	1	1	91	0	0	94	0
20	WForkOC_Lower	1	1	1	91	0	0	94	0
30	400C Middle	2	1	1	91	0	0	94	0
50	OC ⁻ Middle	1	1	1	91	0	0	94	0
60	01mos_Crk	1	1	1	91	0	0	94	0
70	RockCreek	1	1	1	91	0	0	94	0
*** Sul	bbasin 70 site-scale (nodel							
71	Bioswale_N_1	2	1	1	91	0	0	94	0
72	Bioswale_N_2	1	1	1	91	0	0	94	0
73	Bioswale_N_out	1	1	1	91	0	0	94	0
74	Ex_Det_N	1	1	1	91	0	0	94	0
75	Bioswale_S_1	2	1	1	91	0	0	94	0
76	Bioswale_S_2	1	1	1	91	0	0	94	0
77	Bioswale_S_out	1	1	1	91	0	0	94	0
78	Ex_Det_S	1	1	1	91	0	0	94	0
79	BMP_Total	1	1	1	91	0	0	94	0
***	—								
80	9001mos_Crk	1	1	1	91	0	0	94	0
100	OC_AirportTrib01	1	1	1	91	0	0	94	0

5. Added RCHRES 71 to 79 in the HYDR input under the RCHRES block.

HYDR-PA	RM2								
*** RCHRE	S FTB₩	FTBU	LEN	DELTH	STCOR	KS	DB50		
*** X -	x		(miles)	(ft)	(ft)		(in)		
10	0	10	1.52	56.8	3.2	0.0	0.01		
20	0	20	2.99	101.0	3.2	0.0	0.01		
30	0	30	1.66	84.1	3.2	0.0	0.01		
40	0	40	1.98	69.5	3.2	0.0	0.01		
50	0	50	3.18	57.7	3.2	0.0	0.01		
60	0	60	2.43	66.9	3.2	0.0	0.01		
70	0	70	2.74	134.0	3.2	0.0	0.01		
*** Subba	sin 70	site-	scale mode	1					
*** Length and DELTH are dummy values, not needed for this purpose									
71	0	71	0.1	0.0	3.2	0.0	0.01		
72	0	72	0.1	0.0	3.2	0.0	0.01		
73	0	73	0.1	0.0	3.2	0.0	0.01		
74	0	74	0.1	0.0	3.2	0.0	0.01		
75	0	75	0.1	0.0	3.2	0.0	0.01		
76	0	76	0.1	0.0	3.2	0.0	0.01		
77	0	77	0.1	0.0	3.2	0.0	0.01		
78	0	78	0.1	0.0	3.2	0.0	0.01		
79	0	79	0.1	0.0	3.2	0.0	0.01		

80	0	80	1.68	27.4	3.2	0.0	0.01		
90	0	90	1.82	20.8	3.2	0.0	0.01		
100	9	100	2.32	92.0	3.2	0.0	0.01		

HYDR-INIT											
***	Initial condi	tions	for H	YDR s	ectio	n					
***RC HRES	VOL CAT	Initi	al va	lue	of CO	LIND	initia	l va	lue	of OU	TDGT
*** X - X	ac-ft	for e	ach p	ossib	le	exit	for each	possi	ble e	xit,f	t3
10	0.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
20	1.3	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
30	0.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
40	0.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
50	0.4	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
60	0.2	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
70	1.1	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
*** Subbasi	n 70 site-scal	e mode	1								
71 79	0.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0

80	0.1	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0
90	0.5	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0

6. Added RCHRES 71 to 79 in HEAT-PARM under the RCHRES block.

HEAT-PARM						
*** RCHRES	ELEV	ELDAT	CFSAEX	KATRAD	KCOND	KEVAP
*** X - X	(ft)	(ft)				
10	946	137	0.95	9.5	6.12	2.24
20	867	58	0.95	9.5	6.12	2.24
30	996	187	0.95	9.5	6.12	2.24
40	909	100	0.95	9.5	6.12	2.24
50	845	36	0.95	9.5	6.12	2.24
60	783	-26	0.95	9.5	6.12	2.24
70 79	819	10	0.95	9.5	6.12	2.24
80	736	-73	0.95	9.5	6.12	2.24
0.0	744	00	0 05	0 5	Z 40	0.01-

7. Added RCHRES 71 to 79 in SEDTRN input under the RCHRES block.

	SAND	-РМ							
	** RC		D	W		RHO	KSAND	FXP	SND
		- x	-	sec)	(gm/a		Nonine	2	0112
	10		0.01	0.2	(3.4)	2.6	0.1		2.
	20		0.01	0.2			0.002		1.1
	30	60	0.01	0.2		2.6	0.1		2.
	70	79	0.01	0.2		2.6	0.01		2.
	80	280	0.01	0.2		2.6	0.1		2.
	290	300	0.01	0.2		2.6	0.02		2.
	310	380	0.01	0.2		2.6	0.1		2.
	T-CLAY				DUO	TAUC	. т	AUGC	
	CHRES	D	₩ (in(coo)		RHO			AUCS	M
*** x 10	- x	(in) 0.0006	(in/sec) 0.004	gii	/cm3 2.3	1b/ft2)/ft2)3671	1b/ft2.d 0.001
20		0.0006	0.004		2.3	0.0010 0.07919		4248	0.001
30		0.0006	0.004		2.3	0.0017		9353	0.001
40		0.0006	0.004		2.3	0.0010		8023	0.001
50		0.0006	0.004		2.3	0.0010		9886	0.001
60		0.0006	0.004		2.3	0.0040		6280	0.001
70	79	0.0006	0.004		2.3	0.1984		1021	0.001
80		0.0006	0.004		2.3	0.0010		8807	0.001
90		0.0006	0.004		2.3	0.00663		7349	0.001
100		0.0006	0.004		2.3	0.0030		6189	0.001
511	T-CLAY	V-PM							
	CHRES	 D	W		RHO	TAUC	D I	AUCS	м
*** X		(in)			1/cm3	1b/ft		0/ft2	1b/ft2.d
10		0.0001			2.0	0.0010		01000	0.001
20		0.0001			2.0	0.0591		1620	0.001
30		0.0001			2.0	0.0016		39 06	0.001
40	l	0.0001	0.00015		2.0	0.0010	0 0.0	05 09 4	0.001
50		0.0001	0.00015		2.0	0.0010	0 0.0	33112	0.001
60		0.0001	0.00015		2.0	0.0032	5 0.0	03642	0.001
70		0.0001			2.0	0.1406	9 0.3	32136	0.001
80		0.0001	0.00015		2.0	0.0010	0 0.0	39 07 7	0.001
90		0.0001			2.0	0.0039		37944	0.001
100		0.0001	0.00015		2.0	0.0030	3 0.0	02601	0.001

8. Updated the number of general constituents to six: HSPF can model up to a maximum of seven general constituents. There are six general constituents to model – BACT, ORGN, NH3N, NO3N, ORGP, and ORTHOP. In the original watershed model, lead and zinc are also modeled as general constituents. Their GQUAL inputs were removed so that the total number of general constituents did not exceed maximum of seven.

GQ-I	GENDAI	TA .							
*** R	CHRES	NGQL	TPFG	PHFG	ROFG	CDFG	SDFG	PYFG	LAT
*** X	- x								deg
10	640	ó	1	2	2	2	1	2	30
END	GQ-GI	ENDATA	1						

9. Added RCHRES 71 to 79 in GQUAL input for BACT. Note that RCHRES 73, 77, and 79 are dummy reaches used to combine the outflows from other reaches. The decay is irrelevant in these dummy reaches so a minimum decay coefficient (essentially zero) is assigned.

GQ-(GENDEC	AY	
*** R(CHRES	FSTDEC	THFST
*** X	- x	(/day)	
10	70	1.2	1.1
71		1.2048	1.0
72		1.2048	1.0
73		0.00001	1.0
74		1.5144	1.0
75		1.2048	1.0
76		1.2048	1.0
77		0.00001	1.0
78		1.5144	1.0
79		0.00001	1.0
80	640	1.2	1.1
END	GQ-GE	NDECAY	

10. Added GQUAL inputs for ORGN, NH3N, NO3N, ORGP, and ORTHOP.

*** GQUAL 2 is ORGN GQ-QALDATA *** RCHRES GQID DQAL CONCID CONV QTYID *** x - x concid 10 6400RGN 0 mg/L 16052 1b END GQ-QALDATA **GQ-QALFG** *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** X - X 70 0 10 0 0 0 0 0 0 1 71 79 0 0 0 0 0 0 80 640 0 0 0 0 0 0 0 END GQ-QALFG GQ-GENDECAY *** RCHRES FSTDEC THFST *** X - X (/day) 71 0.2064 1.0 72 0.2064 1.0 73 0.00001 1.0 74 1.0 0.0216 75 0.2064 1.0 76 0.2064 1.0 77 0.00001 1.0 78 0.0216 1.0 79 0.00001 1.0 END GQ-GENDECAY *** GQUAL 3 is NH3N GQ-QALDATA ******* RCHRES GQID DOAL CONCID CONV QTYID *** X - X concid 10 640NH3N 0 mg/L 16052 1b END GQ-QALDATA GO-OALFG *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** x - x 10 70 0 0 0 0 0 0 0 71 79 0 0 0 0 0 1 0 80 640 0 0 0 0 0 0 0 END GQ-QALFG GO-GENDECAY *** RCHRES FSTDEC THFST *** x - x (/day) 71 0.9792 1.0 72 0.9792 1.0 73 0.00001 1.0 74 0.2616 1.0 75 0.9792 1.0 76 0.9792 1.0 77 0.00001 1.0 78 0.2616 1.0 79 0.00001 1.0 END GQ-GENDECAY

*** GQUAL 4 is NO3N GQ-QALDATA CONCID *** RCHRES GQID DQAL CONV QTYID *** x - x concid 10 640N03N 16052 0 mg/L 1b END GQ-QALDATA GO-OALFG *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** X - X 10 70 0 0 0 0 0 0 0 79 0 0 0 0 0 71 0 1 80 640 0 0 0 0 0 0 0 END GQ-QALFG **GQ-GENDECAY** *** RCHRES FSTDEC THFST *** x - x (/day) 71 0.7128 1.0 72 0.7128 1.0 0.00001 73 1.0 1.0 74 0.2640 75 0.7128 1.0 76 0.7128 1.0 77 0.00001 1.0 78 0.2640 1.0 79 0.00001 1.0 END GQ-GENDECAY *** GQUAL 5 is ORGP GQ-QALDATA GQID DQAL *** RCHRES CONCID CONV QTYID *** x - x concid 10 6400RGP 0 mg/L 16052 1b END GQ-QALDATA GQ-QALFG *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** X - X 70 0 0 10 0 0 0 0 0 79 0 0 0 0 0 0 71 1 0 80 640 0 0 0 0 0 0 END GQ-QALFG **GQ-GENDECAY** THFST *** RCHRES FSTDEC *** X - X (/day) 71 0.24 1.0 72 0.24 1.0 0.00001 73 1.0 74 1.0152 1.0 75 0.24 1.0 76 0.24 1.0 77 0.00001 1.0 78 1.0152 1.0 79 0.00001 1.0

79 0.00001 END GQ-GENDECAY *** GQUAL 6 is ORTHOP GQ-QALDATA *** RCHRES GQID DQAL CONCID CONV QTYID *** x - x 10 6400RTHOP concid 16052 1b 0 mg/L END GQ-QALDATA GQ-QALFG *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** x - x 10 70 0 0 0 0 0 0 0 71 79 0 0 0 0 0 1 0 80 640 0 0 0 0 0 0 0 END GQ-QALFG GQ-GENDECAY THFST *** RCHRES FSTDEC *** x - x (/day) 71 0.24 1.0 72 0.24 1.0 73 0.00001 1.0 74 1.0152 1.0 75 0.24 1.0 76 0.24 1.0 0.00001 77 1.0 78 1.0152 1.0 0.00001 79 1.0 END GQ-GENDECAY

11. Added FTABLEs for RCHRES 71 to 79. Only FTABLE for RCHRES 71 shown below as an example.

*** Subbasin 70 site-scale model

FTABLE	71				
rows cols				(**	
17 5					
depth	area	volume	infil	outflow	***
0.00	0.0230	0.0000	0.0347	0.0000	
0.25	0.0230	0.0020	0.0347	0.0000	
0.50	0.0230	0.0040	0.0347	0.0000	
0.75	0.0230	0.0060	0.0347	0.0000	
1.00	0.0230	0.0080	0.0347	0.0000	
1.25	0.0230	0.0100	0.0347	0.0000	
1.50	0.0230	0.0121	0.0347	0.0000	
1.75	0.0230	0.0141	0.0347	0.0000	
2.00	0.0230	0.0161	0.0347	0.0000	
2.25	0.0230	0.0181	0.0347	0.0000	
2.50	0.0230	0.0201	0.0347	0.0000	
2.75	0.0230	0.0221	0.0347	0.0000	
3.00	0.0230	0.0241	0.0347	0.0000	
3.25	0.0298	0.0307	0.0347	0.0000	
3.50	0.0367	0.0390	0.0347	0.0000	
3.75	0.0436	0.0491	0.0347	0.0000	
4.00	0.0505	0.0608	0.0347	7.5000	
END FTABLE	71				

12. The BMP site for calibration (Brooks Creek) is in Segment 4 of the watershed HSPF model. Therefore, Segment 4 parameters of PERLND and IMPLND were used in the site-scale calibrated model. However, Subbasin 70 is in Segment 1 of the watershed HSPF model, so the meteorological timeseries in the EXT SOURCES block was modified to be consistent with those of Segment 1.

*** 🕅	et Seg BE133							
WDM2	801 PREC	ENGLZERO	SAME	PERLND	401	417	EXTNL	PREC
WDM2	803 ATEM	ENGL	SAME	PERLND	401	417	EXTNL	GATMP
WDM2	807 DEWP	ENGL	SAME	PERLND	401	417	EXTNL	DTMPG
WDM2	804 WIND	ENGL	SAME	PERLND	401	417	EXTNL	WINMOV
WDM2	805 SOLR	ENGL	SAME	PERLND	401	417	EXTNL	SOLRAD
WDM2	806 PEVT	ENGL	1.3SAME	PERLND	401	417	EXTNL	PETINP

***	Met Seg BE133							
WDM2	801 PREC	ENGLZERO	SAME	IMPLND	403	417	EXTNL	PREC
WDM2	803 ATEM	ENGL	SAME	IMPLND	403	417	EXTNL	GATMP
WDM2	807 DEWP	ENGL	SAME	IMPLND	403	417	EXTNL	DTMPG
WDM2	804 WIND	ENGL	SAME	IMPLND	403	417	EXTNL	WINMOU
WDM2	805 SOLR	ENGL	SAME	IMPLND	403	417	EXTNL	SOLRAD
WDM2	806 PEVT	ENGL	1.3SAME	IMPLND	403	417	EXTNL	PETINP

13. Added RCHRES 71 to 79 to the EXT SOURCES block.

*** No	bbasin 70 sit rain on the l t Seq BE133	e-scale model BMP RCHRES					
WDM2	801 PREC	ENGLZERO	OSAME	RCHRES	71	79 EXTN	L PREC
WDM2	803 ATEM	ENGL	SAME	RCHRES	71	79 EXTN	L GATMP
WDM2	807 DEWP	ENGL	SAME	RCHRES	71	79 EXTN	L DEWTMP
WDM2	804 WIND	ENGL	SAME	RCHRES	71	79 EXTN	L WIND
WDM2	805 SOLR	ENGL	SAME	RCHRES	71	79 EXTN	L SOLRAD
WDM2	808 CLOU	ENGL	SAME	RCHRES	71	79 EXTN	L CLOUD
WDM2	806 PEVT	ENGL	1.3SAME	RCHRES	71	79 EXTN	L POTEV

14. Specified the area of each landuse to each BMP in the SCHEMATIC block.

*** Subbasin	70 site-scale	model			
*** Bioswale	N				
PERLND 401		0.0353	RCHRES	71	22
PERLND 405		0.0843	RCHRES	71	22
IMPLND 405		0.1566	RCHRES	71	21
PERLND 407		0.0084	RCHRES	71	22
IMPLND 407		0.0754	RCHRES	71	21
*** Extended	detention N				
PERLND 401		0.3414	RCHRES	74	22
PERLND 405		0.8154	RCHRES	74	22
IMPLND 405		1.5142	RCHRES	74	21
PERLND 407		0.0810	RCHRES	74	22
IMPLND 407		0.7290	RCHRES	74	21
*** Bioswale	S				
PERLND 401		0.0284	RCHRES	75	22
PERLND 405		0.0679	RCHRES	75	22
IMPLND 405		0.1261	RCHRES	75	21
PERLND 407		0.0067	RCHRES	75	22
IMPLND 407		0.0607	RCHRES	75	21
*** Extended	detention S				
PERLND 401		1.5582	RCHRES	78	22
PERLND 405		3.7211	RCHRES	78	22
IMPLND 405		6.9106	RCHRES	78	21
PERLND 407		0.3697	RCHRES	78	22
IMPLND 407		3.3269	RCHRES	78	21

15. Added MASS-LINKs to connect surface outflows of PERLND and IMPLND to the BMPs/RCHRES.

*** Subbasin 70 site-scale modeling Model 1: GQUAL 1 - BACT GQUAL 2 - ORGN GQUAL 3 - NH3N GQUAL 4 - NO3N GQUAL 5 - ORGP GQUAL 6 - ORTHOP *** For transferring SURO and SOQUAL to RCHRES MASS-LINK 22 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> <Name> x x<-factor-> <Name> <Name> x x *** PWATER SURO RCHRES INFLOW IVOL PERLND 0.0833333 PQUAL RCHRES INFLOW IDQAL PERLND SOQUAL 1 1 PQUAL SOQUAL 3 RCHRES INFLOW IDQAL PERLND 2 PQUAL SOQUAL 4 INFLOW IDQAL PERLND RCHRES 3 PERLND PQUAL SOQUAL 5 RCHRES INFLOW IDQAL 4 INFLOW IDQAL PERLND PQUAL SOQUAL 6 RCHRES 5 PERLND PQUAL SOQUAL 7 RCHRES INFLOW IDQAL ó PWTGAS SOHT RCHRES PERLND INFLOW IHEAT 1 END MASS-LINK 22 MASS-LINK 21 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> x x<-factor-> <Name> <Name> <Name> x x *** IMPLND IWATER SURO .083333 RCHRES INFLOW IVOL IMPLND IQUAL SOQUAL 1 RCHRES INFLOW IDQAL 1 IMPLND IQUAL SOQUAL 3 RCHRES INFLOW IDQAL 2 IMPLND IQUAL SOQUAL 4 RCHRES INFLOW IDQAL 3 IMPLND IOUAL SOQUAL 5 RCHRES INFLOW IDQAL 4 IMPLND IOUAL SOQUAL 6 RCHRES INFLOW IDQAL 5 IMPLND IQUAL SOQUAL 7 RCHRES INFLOW IDQAL ó IWTGAS SOHT RCHRES INFLOW IHEAT IMPLND 1 END MASS-LINK 21

Attachment C Development of BMP Ranking Matrix

Introduction

Under the Upper San Antonio River (USAR) Watershed Protection Plan Implementation – Green Stormwater Infrastructure (GSI) Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP) project, potential sites were identified for the development of Best Management Practices (BMP). The selected BMP will be modeled to evaluate their performance in reducing stormwater runoff and improving water quality (WQ) with focus on reducing *E. coli* (EC) bacteria. The project team includes the Texas Commission on Environmental Quality (TCEQ), the San Antonio River Authority (River Authority), and Lockwood, Andrews & Newnam, Inc. (LAN).

Per the QAPP scope, one BMP site per subbasin was selected for modeling and BMP performance evaluation. Within each of the eight subbasins, the River Authority conducted GIS operation and site evaluation to identify several potential BMP sites. To assist with the selection of BMP site most suitable for modeling and performance evaluation, LAN developed a BMP ranking matrix using MS Excel. This ranking matrix is the first of its kind in San Antonio and it greatly helped with evaluation and selection of BMP sites within a subbasin. This attachment provides a summary of the factors considered and the scoring involved in the BMP ranking process. Exhibit I-1 shows portions of the developed BMP Ranking Matrix, indicating the complexity of the matrix.

The River Authority's BMP Ranking Matrix

The developed BMP ranking matrix is to assist the evaluation of potential BMP sites by assigning scores to key factors such as drainage area, land uses, BMP footprint area, receiving water, BMP types, shading, Location of BMP site within a subbasin, Hydrologic Soil Group, Area in floodplain X and AE zones, etc. These key factors were selected based on the River Authority and LAN's experience in the development of BMP database, water quality modeling, BMP Tool, and the Low Impact Development or LID. Screen shots of an example BMP Ranking Matrix are provided to the end of this attachment, and the columns of a BMP Ranking Matrix are described below:

- **OBJECTID_1**: ArcMap object or polygon ID (provided by the River Authority).
- HydroID: Hydrologic ID (provided by the River Authority).
- **DA_ID**: Subbasin ID and BMP ID (provided by the River Authority), e.g. "070-01" for USAR Subbasin 070, BMP Site 01.
- Name: Name of a BMP site (provided by the River Authority), e.g. "ROW Along I-10", "SAHA", etc.
- Sara's Notes: Any note provided by the River Authority entered for a BMP site, e.g. "Right of way along interstate 10 highway."
- **DA_acres**: Drainage area to a BMP in acres.
- Net DA: Net drainage area to a BMP in acres, which is the DA_acres minus BMP footpring Area (ac).

OBJECT	D_1	HydrolD	DA	_ID	Name	Sara's Notes	DA_acres	Net DA	DA_Score	UM_11	UB_12	RD_21	RL_22	RM_23	RH_24	RMF_25	C_31	I_41	T_51	M_61	OU_71	OC_72	U_81 V	V_91
	1	14667	7 07	0-01	ROW Along I-10	Right of way along interstate 10 highway. Area is approximately 11 acres. Most north of Upper San Antonio River Watershed. RC: Medical Center & Far North		399.0	4.88	0.0	0.0	3.6	0.0	0.0	34.4	29.0	241.7	0.0	94.3	0.0	0.0	0.0	0.0	1.8
	2	14668	3 07	0-02	Datapoint Drive	Adjacent to Pointe North Condominiums. South west in subbasin 70. Area is approximately 1 acre. In Medical Center, MC is interested Owned by COSA	5.3	4.6	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.3	4.4	0.0	0.6	0.0	0.0	0.0	0.0	0.0

D	_ID IC	% IC	%_Score	Shape_Length	Shape_Are	a %Re	s %Con	n %In	d %Trar	n %Dev	%Dev_Score	BMP footpring Area (ac)	BMPfootprint _Score	Outfall	Outfall _Score	Avai BMP Types	BMPtypes _Score	Damage Center	DC_Score	Shading	Shading_Score	Location L	ocation_Score	HSG	HSG_Score	Area in X Zone	Area in AE Zone	% Area in X	Floodplain_score	Overall_Score	e Ranking
0	0-01 85	5.9	2.05	10126	163794	0 17	% 60%	6 09	% 239	6 100%	1.72	5.94	1.66	1	1.11	1	0.48	0	0.00	10.00	1.96	1.00	0.63	1.00	1.49	5.94	0.00	100.00%	1.67	17.08	2
0)-02 89	9.0	2.12	1064	2160	12 65	% 82%	6 09	% 129	6 100%	1.73	0.70	0.19	0	0.00	2	0.95	0	0.00	4.00	0.78	1.00	0.63	1.00	1.49	0.70	0.00	100.00%	1.67	9.07	6

Exhibit I-1 Example Portions of Developed BMP Ranking Matrix

- **DA_Score**: Drainage area score = **Net DA** x 10 / Sum(**Net DA** of all BMP sites within the same subbasin). The "x 10" is to normalize the score within the range of 0 to 10.
- UM_11, UB_12, RD_21, RL_22, RM_23, RH_24, RMF_25, C_31, I_41, T_51, M_61, OU_71, OC_72, U_81, W_91: Areas in acres of each land use type.
- IC%: Percent impervious cover calculated based on land use types and their associated impervious cover percentages.
- IC%_Score: Percent impervious cover score = IC% x 10 / Sum(IC% of all BMP sites within the same subbasin).
- **Shape_Length**: Length of BMP site polygon in ArcMap.
- **Shape_Area**: Area of BMP site polygon in ArcMap.
- %Res: Percent Residential Areas = Sum(RD_21, RL_22, RM_23, RH_24, RMF_25) / DA_acres.
- %Com: Percent Commercial Areas = C_31 / DA_acres.
- %Ind: Percent Industrial Areas = I_41 / DA_acres.
- %Tran: Percent Transportation Areas = T_51 / DA_acres.
- %Dev: Percent Development Areas = Sum(%Res, %Com, %Ind, %Tran)
- %Dev_Score: Percent development areas score = %Dev x 10 / Sum(%Dev of all BMP sites within the same subbasin).
- BMP footpring Area (ac): Area of BMP footprint in acres (provided by the River Authority).
- **BMPfootprint_Score**: BMP footprint areas score = **BMP footpring Area** x 10 / Sum(**BMP footpring Area** of all BMP sites within the same subbasin).
- **Outfall**: Number of potential outfalls from BMP footprint to receiving water bodies.
- **Outfall_Score**: Outfall score = **Outfall** x 10 / Sum(**Outfall** of all BMP sites within the same subbasin).
- Avai BMP Types: Number of available BMP types that may fit the BMP footprint area. This is a judgment of 1 to 5. If the available area is a large well-shaped piece of land that has much flexibility to put different types of BMP, a score of 5 may be assigned. If available land actually consists of a large number of small pieces of land, or weird shape, then a 1 or 2 score may be assigned.
- **BMPtypes_Score**: Number of available BMP types score = **Avai BMP Types** x 10 / Sum (**Avai BMP Types** of all BMP sites within the same subbasin).
- **Damage Center**: Hydrologic damage center score = 1 if the BMP site is within a damage center or 0 if not.
- **DC_Score**: Damage center score = **Damage Center** x 10 / Sum(**Damage Center** of all BMP sites within the same subbasin), or 0 if the Sum is zero.
- **Shading**: Shading of the BMP site, assigned a value of 0 to 10 by reviewing aerial and making a judgment of the shading effect. A value of 10 will be open area with no shading.
- Shading_Score: Shading score = Shading x 10 / Sum(Shading of all BMP sites within the same subbasin).
- Location: Location of BMP site within the subbasin, with a 5 if near the downstream end and a 1 if upstream.
- Location_Score: Location score = Location x 10 / Sum(Location of all BMP sites within the same subbasin).
- **HSG**: Hydrologic Soil Group score with a 1 if Type D, 2 if Type C, etc. If a mixture of Types C and D, etc., then a composite value can be assigned.
- HSG_Score: HSG score = HSG x 10 / Sum(HSG of all BMP sites within the same subbasin).

- Area in X Zone: Area in floodplain X zone, calculated by intersecting floodplain layer with available land area and calculating the available land at a BMP site within the X zone.
- Area in AE Zone: Area in floodplain AE zone, calculated by intersecting floodplain layer with available land area and calculating the available land at a BMP site within the AE zone.
- % Area in X: Percent of BMP site area in X zone = Area in X Zone / BMP footpring Area.
- Floodplain_score: Floodplain score = % Area in X x 10 / Sum(% Area in X of all BMP sites within the same subbasin).
- **Overall_Score**: Weighted sum of all scores.
- **Ranking**: Rank of each BMP site within a subbasin, with the BMP site with the highest **Overall_Score** ranked number 1.
- **Remarks**: Any remarks related to a BMP site and the scoring of the site.

The ranking matrix is set up so each of the scores in the matrix is multiplied by a weighing factor when calculating the "Overall_Score". The weighing factors are located in the "Weights" row with default values of 1.0, and the overall scores will automatically update accordingly. The River Authority can adjust the values higher or lower than the default 1.0 as they see fit.

As an example of scoring key factors, as shown in Exhibit II-1, Drainage area to a BMP in acres is first obtained from GIS processing. Then, a Net drainage area to a BMP in acres is calculated, which is the Drainage area minus BMP footprint Area. Next, a Drainage area score is assigned by multiplying the Net drainage area by 10 and dividing it by the sum of Net Drainage Areas of all BMP sites within the subbasin. The "multiplying by 10" is to normalize the score within the range of 0 to 10.

As another example, as shown in Exhibit II-2, Percent impervious cover is calculated based on land use types and their associated impervious cover percentages. Then, Percent impervious cover score is assigned by multiplying the Percent impervious by 10 and dividing it by the sum of Percent impervious of all BMP sites within the subbasin.

Similarly, Percent Development Areas is calculated by summing the %Residential, %Commercial, %Industrial, and %Transportation land use together. Then, the Percent Development Areas score is assigned by multiplying the Percent Development Areas by 10 and dividing it by the sum of Percent Development Areas of all BMP sites within the subbasin.

OBJECTID_1	HydroID	DA_ID	Name	DA_acres	Net DA	DA_Score
1	14667	070-01	ROW Along I-10	404.9	399.0	4.88
2	14668	070-02	Datapoint Drive	5.3	4.6	0.06
3	14669	070-03	Dr. Marths Med Elementary	312.3	301.0	3.68

Exhibit II-1 Assigning Drainage Area Scores for BMP Ranking

DA_ID	IC%	IC%_Score	%Res	%Com	%Ind	%Tran	%Dev	%Dev_Score
070-01	85.9	2.05	17%	60%	0%	23%	100%	1.72
070-02	89.0	2.12	6%	82%	0%	12%	100%	1.73
070-03	70.5	1.68	40%	36%	6%	9%	92%	1.58

Exhibit II-2 Assigning Percent Impervious Cover and Percent Development Scores

As shown in Exhibit II-3, BMP footprint areas score is assigned by multiplying BMP footprint areas in acres by 10 and dividing it by the sum of BMP footprint areas of all BMP sites within the subbasin. The Number of potential outfalls from BMP footprint to receiving water bodies is assigned a score in a similar way.

The Number of available BMP types that may fit a BMP footprint area is assigned a score of 1 to 5. If the available area is a large well-shaped piece of land that has much flexibility to put different types of BMP, a score of 5 may be assigned. If available land actually consists of a large number of small pieces of land, or in weird shape, then a 1 or 2 score may be assigned.

Other key factors are scored in similar manner, and the overall scores and ranking were then calculated. The developed matrix has helped the project team prioritize the BMP sites, and also provide justification for the final selection of BMP site within each subbasin. A complete image of an example Ranking Matrix is attached below.

DA_ID	BMP footpring Area (ac)	BMPfootprint _Score	Outfall	Outfall _Score	Avai BMP Types	BMPtypes _Score
070-01	5.94	1.66	1	1.11	1	0.48
070-02	0.70	0.19	0	0.00	2	0.95
070-03	11.28	3.15	2	2.22	5	2.38

Exhibit II-3 Assigning BMP Footprint, Outfall, and BMP Types Scores

Reference

San Antonio River Authority (SARA). 2019. Upper San Antonio River Watershed Protection Plan Implementation – Green Stormwater Infrastructure Master Plan Data Acquisition, Modeling, and Geospatial Quality Assurance Project Plan (QAPP). Revision date: 09/17/2019.

OBJECTID 1 HvdroiD DA ID Nam	HvdrolD D	DA ID Name	Sara's Notes	DA acres	acres Net DA DA	A Score UK	A 11 UB 3	12 RD 21 RL	8L 22 RM	22 RM 23 RH 24 RMF		25 C 31 I 41 T 51 M 61 OU 71 OC 72 U 81	T 51 N	1 61 OU	71 0C 72	U 81 W	W 91 IC% II	C% Score S	shape Length	Shape Area	%Res %(%Com %In	kind %Tran	%Tran %Dev %De	ev Score BMP f	BMP footoring Area (ac)
			Right of way along interstate 10 highway. Area is approximately 11 acres. Most			2000						5						2020-012				`				(an) nan (Bui daoon
-	14667 0	14667 070-01 ROW Along I-10	north of Upper San Antonio River Watershed. RC: Medical Contros Res. North	404.9	399.0	4.88	0.0	0.0 3.6	0.0	0.0 34.4	29.0	241.7 0.0	94.3	0.0	0.0 0.0	0.0	1.8 85.9	2.05	10126	1637940	17%	60% 0	0% 23%	100%	1.72	5.94
2	14668 0	14668 070-02 Datapoint Drive	Adjacent to Pointe North Condominiums South west in subbasis 7.0. Area is approximately 1 acre. In Medical Center, MC is interested Owned by COSA.	5.3	4.6	0.06	0.0	0.0 0.0	0.0	0.0 0.0	0.3	4.4 0.0	0.6	0.0	0.0 0.0	0.0	0.089.0	2.12	1064	21602	6%	82% 0	0% 12%	100%	1.73	0.70
m	14669 0	070-03 Dr. Marths Med Elementary	Middle of subbasin 70. Area is approximately 11 acres. South of Fountainhead apartment complex. West of 1-10. RC: Medical Center	312.3	301.0	3.68	6.0 15.4	14 15.2	8.6	3.2 0.3	98.6	111.8 20.0	0 28.1	3.5 (0.0 0.0	0.0	1.4 70.5	1.68	9542	1263132	40%	36% 6	6% 9%	92%	1.58	11.28
4	14670 0	070-04 Denman Estate Park	Other places in proximity: Pavilan Gwang-Ju, FEAST Homeschool Resource Reve is suproximately 7 acres. Area surrounding body of water. Rc: Andreal center CGSA food Proper- Deman State Park	25,4	14.8	0.18	0.0	0.0 16.0	0.5	0.0 0.0	3.4	1.4 0.0	0 2.6	0.0	0.0 0.0	0.0	1.4 34.1	0.81	2446	102680	78%	8	0% 10%	95%	1.64	10.55
S	14671	070-05 Colonial Hills Elementary	East of High Residential area. South of Lanima Apartments. Area is paprovimately 4 acres. RC: Eri North, near a damage center - flooding source is rock creek.	62.9	58.2	0.71	0.0	0.0 0.0	0.0	7.9 24.1	1 0.4	4.6 16.5	6 9.3	0.0	0.0 0.0	0.0	0.0 69.1	1.65	4070	254274	52%	7% 26%	% 15%	100%	1.73	4.66
9	14672 0	070-06 Windsor Park	South of CR5 Energy building, lots of pavement. West of rairoad tracks. Area is approximately 3 acres. RC: North Central Source is rock creek. Damage Center - flooding source is rock creek.	43.1	40.4	0.49	2.4 0	0.0 0.0	0.0	0.0 21.5	0.0	8.8 0.0	9.6	0.0	0.0 0.0	0.0	0.0 70.7	1.69	4002	174272	50%	20% 0	0% 22%	92%	1.60	2.67
F	3986	150-01 Howard Early Childhood Center	5.70 ac Off of E Surrou	26.7	20.9	0.71	0.0	0.0 0.0	0.0	0.0 6.6	5 4.2	2.4 10.0	3.5	0.0	0.0 0.0	0.0	0.0 74.7	2.09	2746	107940	41%	9% 37%	% 13%	100%	2.00	5.81
2	3987 1	150-02 Alamo Heights Junior School	3.41 acres RC: Far Northeast Off of nacogdoches	21.4	18.0	0.61	0.0 0	0.0 0.0	0.0	0.0 4.9	0.0	0.0 14.8	3 1.7	0.0	0.0 0.0	0.0	0.0 71.8	2.01	1728	86603	23%	0% 69%	%8 %	100%	2.00	3.42
3	3988 1	150-03 Scates Park	0.56 acres DC SA23, flooding source new braunfels, austin Hwy, broadway.	6.8	6.2	0.21	0.0	0.0 0.0	0.0	0.0 5.0	0.0	0.0 0.0	1.7	0.0	0.0 0.0	0.0	0.0 71.5	2.00	1332	27306	74%	0% 0	0% 26%	100%	2.00	0.56
4	3989 1	150-04 Terrell Hills City Hall	0.4 acres City of Terrell Hills ownership	241.3	240.7	8.18	0.0	0.0 0.0	0.0	0.0 194.9	0.0	1.2 0.0	45.2	0.0	0.0 0.0	0.0	0.0 69.8	1.96	7918	976005	81%	1% 0	0% 19%	100%	2.00	0.60
5	3990 1	150-05 ROW	0.8 acres Residential area	9.4	8.6	0.29	0.0	0.0 0.0	0.6	0.0 6.5	0.0	0.0 0.0	2.4	0.0	0.0 0.0	0.0	0.0 68.9	1.93	1514	38125	75%	0% 0;	0% 25%	100%	2.00	0.81
22	14688	260-01 T L Shaley Apartments	North of Culebra Rd Surrounded by residential area Owned by SANA	104.0	95.1	0.71	0.0	0.0	0.0	79.6	8.5	0.3 0.0	15.5	0.0	0.0 0.0	0.0	0.0 49.0	0.88	4538	420549	85%	8	0% 15%	100%	1.10	8.90
23	14689	260-02 Northside ISD	edge of the subbasin surrounded by r esidential area	5.8	5.1	0.04	0.0	0.0 0.0	0.0	5.2 0.0	0.0	0.0 0.0	0.6	0.0	0.0 0.0	0.0	0.0 43.0	0.77	1020	23394	%06	0% 0	0% 10%	100%	1.10	0.73
m	25409 24	260-03 Loma Park Elementary	Surrounded by residential area. DC SAO7, Flooding source Zarzamora Creek Drainage channels - improved channels (restoration)	585.4	578.0	4.33	0.8 2	2.9 0.0	0.0 41	417.3 0.0	8.5	28.0 17.1	104.6	0.0	6.1 0.0	0.0	0.0 50.7	0.91	10660	2367826	73%	5%	3% 18%	38%	1.08	7.40
25	14691	260-04 Monterrey Park	COSA, semi within damage center SA07, flooding source Zarzamora Creek. Adjacent to COSA Drainage Channel. Surrounded by Zarzamora Creek	111.8	94.6	0.71	0.0	0.0 0.0	1.7 5	54.5 0.0	2.5	35.9 4.3	3 12.9	0.0	0.0 0.0	0.0	0.0 62.7	1.12	5466	452122	52%	32% 4%	4% 12%	100%	1.10	17.21
4	25410 20	260-05 LBJ Elementary School	Adjacent to COSA Channel. Owned by COSA, Residential Area W Commerce Street	41.4	31.3	0.23	6.5 13.9	0.0 6.1	0.8	16.2 0.0	0.0	1.8 0.0	1.8	0.0	0.5 0.0	0.0	0.0 23.1	0.41	3354	167616	41%	4% 0	0% 4%	50%	0.54	10.12
9	25412 24	260-05 LBJ Elementary School	Adjacent to COSA Channel. Ow ned by COSA, Residential Area W Commerce Street	397.6	388.5	2.91	11.5 135.2	2 0.0	32.4	49.9 0.0	9.6	91.9	33.5	0.0	12.0 11.7	0.0	0.0 38.8	0.70	11356	1608422	23%	23% 3	3% 8%	57%	0.63	9.17
2/ 28	14693	260-05 Edgewood GED Lesting Center 260-07 Acme Park	Off of Old Hwy 90 W, Surrounded by Residential Area Owned by COSA. East Acme Rd, and Rosemont at Bethel Place	66.3 5.4	3.4	0.03	0.0	0.0 0.0	0.0	1.9 0.0	9.8	0.0 1.0	0.6	0.0	2.8 0.0 2.8 0.0	0.0	0.0 25.8	0.46	4168 916	2680/3 21967	34%	2% 0	4% 17% 0% 12%	95% 49%	1.04 0.53	5.67 1.99
29	14695	260-08	SAHA. Off of Acme road. Adiscontration	23.3	21.7	0.16										0.0		1.04	2182	94273	74%			77%	0.84	1.57
2	25411 24	260-09 Gus Garcia Middle School	Adjacent to COSA drainage Channel. Partially within Damage Center, Flooding source Stramora	22.7	13.0	0.10	0.0	1.4 0.0	0.0	1.6 1.9	9 15.8	2.1 0.0	0.0	0.0	0.0 0.0	0.0	0.0 68.5	1.23	1726	91750	85%	0 %6	%0 %0	94%	1.03	9.64
31	14697 2	260-10 Dartmouth	owned by COSA. within damage center, flooding source Zarzamora Creek	55.2	44.5	0.33	1.5 2	.5 0.0	0.0	4.7 0.0	7.4	17.6 13.9	7.7	0.0	0.0	0.0	0.0 72.6	1.30	4326	223106	22%	32% 25	% 14%	93%	1.02	10.67
15	14681	270-01 Woodlawn Elementary	South of a significant shopping strip. Owned by SAISD. RC: Near Northwest West of Bandera Road (421)	55.1	50.5	1.52	0.2 0	0.0 0.0	0.0	12.8 3.2	4.2	18.4 10.2	6.1	0.0	0.0 0.0	0.0	0.0 71.7	1.06	3664	222924	37%	33% 18%	% 11%	100%	1.12	4.62
16	14682	270-02 Chryl West Apartments	West of Bandera Road South of Woodlawn Hills Elementary School North of damage center, SA04, flooding source Apache Creek.	91.5	88.0	2.65	0.1 0	0.0 0.0	0.0	25.6 3.5	12.7	28.4 10.4	1 10.9	0.0	0.0 0.0	0.0	0.0 70.3	1.04	4674	370122	46%	31% 11%	% 12%	100%	1.12	3.47
17	14683	270-03 Woodlawn Ranch Apartments	North of damage center, SA04, flooding source Apache Creek. Adjacent to COSA channels.	103.7	101.7	3.06	0.1 0	0.0 0.0	0.0 2	27.8 3.5	21.7	28.4 10.4	11.9	0.0	0.0 0.0	0.0	0.0 70.2	1.04	4980	419541	51%	27% 10%	% 11%	100%	1.12	2.01
18	14684	270-04 Huppertz Elementary	South west of damage center SA04, flooding source Apache Creek. Surrounded by significant residential area.	10.0	6.2	0.19	0.0 0	0.0 0.0	0.0	0.8 0.0	0.0	0.0 7.3	3 2.0	0.0	0.0 0.0	0.0	0.0 73.0	1.08	1266	40640	%4	0% 73%	% 20%	100%	1.12	3.82
1	25407 2	270-05 Memorial HS	Adjacent to Apache Creek. COSA Bond project for a comprehensive branch library expansion and renovation. Rc: Westside	30.1	21.9	0.66	0 6:0	0.0 0.0	0.0	8.6 0.0	0.0	7.7	4.9	0.0	0.1 0.0	0.0	0.0 67.4	1.00	3122	121560	29%	26% 26%	% 16%	%26	1.08	8.17
7	25413 2	25413 270-05 Memorial HS	Adjacent to Apache Creek. COSA Bond project for a comprehensive branch library expansion and renovation. RC: Westside	20.4	19.6	0.59	0.3 0	0.0 0.0	0.0	0.0	0.0	5.7 12.3	3 2.0	0.0	0.2 0.0	0.0	0.0 77.1	1.14	1836	82585	%0	28% 60%	10%	%86	1.09	0.81

OBJECTID_1 HydroiD DA_ID Nar	HvdrolD		ne	Sara's Notes DA	DA_acres N	et DA D	A Score U	N 11 UB_1	2 RD 21	RL_22 R1	1 23 RH_2	24 RMF_25 C	31 41 T	51 M 6	1 OU_71	0C_72 U_	81 W 91	IC% IC% S	core Shape_L	angth Shape	Area %R	tes %Con	m %Ind	%Tran %	Dev %Dev	Score BMP footpring	g Area (ac)
3	25408 2	I8 270-06 G	eral McMullen and Dartmoutj		31.1	25.6	0.77	0.0	0.0 0.0	0.0	4.8 0.0	0.0	22.8 1.4	2.2 0.0	0.0		0.0 0.0	81.2 1.20	•	2428 1:	125916 15	15% 73%		7%	100% 1.12	5.58	
00	25414 2	270-06	General McMullen and Dartmout)		20.6	12.9	0.39	0.0	0.0 0.0	0.0	0.0 0.0	0.0	18.4 0.0	2.1 0.0	0 0.0	0.0	0.0 0.0	89.9 1.33	B	1760	83215 0	%06 %0	% 0%	10% 10	100% 1.12	2.69	
21	14687	270-07	Colby Glass Elementary	Partially outside of the sub270 boundary. most north of subbasin	6.8	6.2	0.19	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 5.8	0.0 0.0	0.0	0.0	0.0 0.0	74.3 1.10	0	1052	27405 1	1% 0%	% 85%	14% 10	1.12	2 0.62	2
7	14673	310-01	Callaghan Rd	owned by SAWS southeast of a pocket of residential area.	9.2	8.4	0.07	0.0	0.0 0.0	0.2	7.4 0.0	0.0	0.0 0.0	1.6 0.0	0.0	0.0	0.0 0.0	46.7 0.94	4	1468	37385 83	83% 0%	%0 %	17% 1	00% 1.29	98.0	9
8	14674	4 310-02 V	310-02 Woodlake Drive	Parts of it owned by COSA, designated as residential medium. Surrounded by residential area. West of Fredericksburg. COSA channels running through the center of the area.	78.6	68.6	0.56	10.3 0.	0.0 0.0	0.2	52.9 0.0	0.0	1.7 0.0 1	13.3 0.0	0.0	0.0	0.0 0.0	43.0 0.86	9	44.20 3	317739 68	68% 2%	%0 %	17%	87% 1.12	.2 9.93	3
6	14675	5 310-03 B	310-03 Baskin Elementary School	Elementary schoo Iowned by SAISD, residential high. Next to commercial area and surrounded by residential area. Babcock and Shadyview	53.1	49.6	0.41	0.0	0.0 0.0	0.0	0.0 29.5	0.8	5.3 7.5 1	10.1 0.0	0.0	0.0	0.0 0.0	73.4 1.48	8	2740 2	214651 57	57% 10%	% 14%	19% 10	00% 1.29	3.45	10
10	14676	6 310-04 N	310-04 Maverick Elementary School	Owned by SAISD, surrounded by residential area Biong Babcock Rd Near Alazan unmaned Trib	10.3	7.1	90.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 7.5	0.0 0.0	0.0	0.0	0.0	1.45	s	1194	41528 19	19% 0%	% 73%	9% 10	00% 1.29	3.17	,
11	14677	7 310-05 SAWS		SAWS owned, designated as residential high Southwest of large commercial area off of NW Loop 410.	7.9	6.2	0.05	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	1.3 0.0	0.0	0.0	0.0 0.0	69.1 1.39	6	1254	31959 84	84% 0%	% 0%	16% 1	00% 1.29	.74	1
12	14678	310-06	ees Creek	2.4 acres (COSA owned) 4.2 acres (cowned by SAID) Longfellow Middle School 2.8 zurrounded by residential area COSA channel gees through area property.	204.9	193.2	1.58	0.0	0.0 0.0	11.7	9.6 138.3	0.0	0.0 11.4	33.5 0.0	0 0.5	0.0	0.0	65.8 1.32	2	6456 8	828811 78	78% 0%	% 6%	16% 1	.00%	11.67	7
13	14679	9 310-07 k	310-07 Joe Ward Park	COSA owned: Near Damage center and Alazan Unnamed Tributary. Surrounded by residential area	20.3	18.4	0.15	2.4 0.	0.0 0.0	0.0	0.0 12.5	1.2	0.0 0.0	4.2 0.0	0.0	0.0	0.0 0.0	63.1 1.27	7	2368	82 101 67	67% 0%	%0 %	21%	88% 1.14	.4 1.91	1
14	14680		310-08 Babcock Rd	Portion of it is designated as Open Space Easements. Cother is transportation: Coths channels goes through area property.	879.2	871.0	7.12	14.6 0.	0.0 1.2	8.3	274.3 197.4	54.9	129.7 7.5 18	83.9 0.0	0 7.5	0.0	0.0 0.0	64.1 1.29		13822 35	3556228 61	61% 15%	% 1%	21%	97% 1.26	6 8.21	_
32	14698		330-01 Pin Oak II Apartment	East of Fredericksburg Rd. Surrounded by residential area and commercial area. Cost ethnice just south of site selection.	8.2	6.7	0.03	0.0	0.0 0.0	0.0	0.0	2.4	4.6 0.0	1.2 0.0	0 0.0	0.0	0.0 0.0	85.6 1.95	s	1244	33322 25	29% 56%	%0 %	15%	100% 1.87	17 1.52	~
33	14699	330-02	ROW I-10 East	Adjacent to large interstate and surrounded by commercial and residential area. COSA channel and East Woodlawn Ditch going through site selections.	748.2	746.4	3.75	30.9 0.	0.0 16.7	7.7	61.6 63.3	141.6	241.0 10.3 15	.59.1 0.0	0 14.6	0.0	0.0 1.5	72.5 1.65		15618 30	3026422 39	39% 32%	% 1%	21%	94% 1.75	5 1.85	2
34	14700	330-03	ROW I-10 West	Adjacent to large interstate and surrounded by commercial area. COSA channels and East woodlawn ditch going through site selection.	103.2	101.6	0.51	0.0	0.0 0.0	0.0	0.0 0.0	6.8	80.1 0.0 1	14.4 0.0	0 1.9	0.0	0.0 0.0	87.4	6	4960 4		7% 78%	% 0%	14%	98% 1.84	1.55	2
35	14701	1 330-04 S	Spencer Ln	South of I-10 and adjacent to COSA Channel and East woodlawn ditch	13.7	9.6	0.05	6.0 0	0.0	0.0	0.0 1.	1 2.9	2.3 0.0	1.4 0.	0.0	0.0	0.0	45.4 1.04	4		55355 30	30% 17%		10% 5	56% 1.05	5 4.11	-
36	14702	330-05	Old Spanish Walking Trails	Waking trails loated hee. Adjaent to freedicksburg, East woodlawn ditch laced within area. Iargea amount of commercial and residential area surrounding site selection. COSA channels nearby too.	1064.1	1036.6	5.21	63.7 0.	0.0 16.7	7.7	65.9 75.3	167.1	416.2 10.3 21	219.5 0.0	0 20.2	0.0	0.0 1.5	73.6 1.68		20130 43	4304283 31	31% 39%	% 1%	21%	92%	2 27.50	0
37	14703	330-06	Fredericksberg	Surrounded by commercial and residential area. Adjacent to East woodlawn ditch and COSA channels.	94.4	90.1	0.45	0.0	0.0 0.0	0.0	0.0 31.8	8.8	25.5 6.7 1	16.2 0.0	0 5.5	0.0	0.0 0.0	1.68	89	5392 3:	381792 43	43% 27%	% 7%	17%	94% 1.76	6 4.32	2
1	1756 4		420-01 Villa Tranchese Apartments	Between North Flores and San Pedro. Surrounded by residential and commercial area.	10.2	9.0	0.39	0.0	0.0 0.0	0.0	0.0	0.0	6.6 0.0	2.7 0.0	0.0	0.0	0.0 0.0	87.8 0.96	6	1450	41141 9	9% 65%	% 0%	26%	100% 0.93	3 1.20	0
2	1757	420-02	The Advanced Learning Academy	Between North Flores and San Pedro. Surrounded by residential and commercial area.	7.8	7.0	0:30	0.0	0.0 0.0	0.0	0.0 2.0	0.0	0.0 4.5	1.2 0.0	0.0	0.0	0.0 0.0	73.1 0.80	0	1050	31354 26	26% 0%	% 59%	16% 10	00%	3 0.77	,
6		25416 420-03 SAISD		Right off of 35. Adjacent to San Pedro Creek. Also in the area: Columbus Park, San Francesco Di Paolo Church, Soap Works 2	24.9	20.4	0.87	0.0	0.1 0.0	0.7	0.0 0.0	0.0	7.3 6.6 1	10.2 0.0	0.0	0.0	0.0 0.0	83.0 0.91	1	2474 1	100518 3	3% 29%	% 26%	41% 10	100% 0.93	4.50	0
4	1759	9 420-04 S	420-04 San Pedro Creek	COSA owner, Right off of 35, Adjacent to San Pedro Creek. Also in the area: Columbus Park, San Francesco Di Paolo Church, Soap Works 2	18.9	16.5	0.71	0.0	0.0 0.0	0.0	0.0 0.0	2.5	5.7 0.0 1	10.2 0.0	0 0.5	0.0	0.0 0.0	85.7 0.94	4	2112	76561 13	13% 30%	% 0%	54%	97% 0.91	1 2.39	
S	1760	0 420-05 SAISD		Right off of 35, Adjacent to San Pedro Creek. Also in the area: Columbus Park, San Francesco Di Paolo Church, Soap Works 2	5.8	3.7	0.16	0.0	0.0 0.0	0.0	0.0 0.0	0.0	5.6 0.0	0.2 0.0	0.0	0.0	0.0 0.0	86 .0 9.68 1	8	828	23551 0	%96 %0	%0 %	4%	100% 0.93	3 2.16	10
9	1761	1 420-06 N	Milam Park	Adjacent to Santa Rosa Hospital and a lot of commercial activity.	55.7	52.4	2.25	0.0	0.0	0.0	0.0	0 11.4 2	7.0 0.0	17.4 0.	0.0	0.0	0.0	86.9 0.9	5	4290 2	25478 24	0% 485	%0 %	31% 1	00% 0.9	3 3.38	
2	1762	2 420-07 UTSA	UTSA	West of 35 and ⊢10	88.4	80.3	3.45	1.6 0.	0.0	0.0	0.0	0.0	53.5 2.6	30.7 0.0	0.0	0.0	0.0	87.9 0.96	6	6782 3	357716 0	0% 61%	% 3%	35%	98% 0.92	8.13	~
8	1764	3 420-08 C	Commanders House SAHA	Surrounded by commercial activity Adjacent to apache and san pedro creek. COSA drainage channels nearby.	2.7	1.8 5.5	0.08	0.0 0	.0 0.1 .1 0.0	0.0	0.0 0.0	0.0	2.6 0.0 3.6 0.0	0.1 0. 1.8 0.	0.0	0.0	0.0 0.0	90.0 0.98 0.76	8	614 1092	10837 28471 (0% 96! 0% 519	%0 %	4% 1 25%	00% 0.9	3 0.91 2 1.50	1
10		1765 420-10 Martin St.		Corner of Martin and 35 Adjacent to residential and commercial area.	6.0	5.2	0.22	0.0	0.0 0.0	0.0	0.0 0.0	4.2	0.1 0.0	1.7 0.0	0.0	0.0	0.0 0.0	79.4 0.87	2	1118	24075 71	71% 1%	% 0%	28%	100% 0.93	3 0.72	~
11		1766 420-11 N Frio		East of N frio, surrounded by residential and commercial area.	32.8	31.1	1.34	0.0	0.0 0.0	0.0	5.3 0.0	0.0	18.6 0.0	9.0 0.0	0 0.0	0.0	0.0 0.0	81.7 0.89	6	2608 1	132867 16	16% 57%	% 0%	27%	100% 0.93	1.71	-
Weights							1											1							1		

Remarks	Lineer strips of land along readway. Limited to swale type BMP. Actual drainage areas of Individual strips much smaller. No obvious outfall location, need to check drainage system of 1-10.	Small drainage area and lack possible outfall location.	May be able to outfail to storm sewer but need closer look with more info of storm sewer.	Drainage area mainly the site itself which is a park, lack possible outfall location.	Drainage channel nearby possible outfall location but need some pipe routing.	Drainage channel nearby possible outfall location but need some pipe routing. A ditch along adjacent rairoad, but seems too shallow for outfall. Damage center SA26.	There should be a storm sever along Nacogdochee fload (GIS data show inlets along road but no storm sever line), but doubt she can outfall to it.	Small drainage area. Available land polygons relatively anall. There should be a storm sever along Nacogdoret and GIS data show inlets along road but no storm sever line), but doubt site can outfall to it.	Small drainage area and lack possible outfall location.	A ditch nearby (see Google stree view) may be a possible outfall location. Available land polygons are relatively small.	Small drainage area and lack possible outfall location.	1C 49%. Not sure if able to divertifow from storm sever and outfall back. May consider if other better sites not work out.	Small drainage area. Relatively low IC. Lack possible outfall location.	May divert flow from 8x.7, treat, and discharge to nearbychannel. Large drainage area, need large splitter box. Damage center SAO7.	May outfall to drainage channel nearby. Damage center SA07.	Available land on east side of channel. Drainage area a lot of undeveloped area.	Available land on west side of channel. Drainage area a lot of undeveloped area.	Not sure if it can outfall to storm sewer along Old US 90 W. Small drainage area, baskally the site itself. Not sure if it can outfall to nearby storm	sewer. Small drainage area, baskrally the site itself. Not sure if it can outfall to nearby storm Small drainage area, baskrally the site itself. Not sure if it can outfall to nearby storm	ormer: Small drainage area, baskally the site itself. Damage center SAO7. Outfall to adjacent channel.	May outfall to adjacent drainage channel. Damage center SA21.	There should be a storm server along Bandera hoad to the east (GIS data show inlets along road but no storm sever line). May divert flow, treat, and discharge to channel to the west.	Available land polygons are small grass areas here and there in the apartment complex. May outfall to channel nearby.	Available land polygons are small grass areas here and there in the apartment complex. May outfall to channel nearby.	Small drainage area, basically the site itself. Lack possible outfall location.	Available land south of channel.	Available land north of channel. Drainage area may be larger because of storm sewer.
e Rankinı	2	9	1	ۍ	4	e	2	3	4	1	5	ø	10	1	ε	9	2	-	6	5	4	4	9	5	∞	2	7
Overall_Scor	17.08	6.07	20.86	12.75	16.06	16.18	21.10	17.36	12.98	26.69	12.87	7.45	5.39	12.60	10.73	7.81	10.73	7.5.7 36.2	5.71	9.31	9.44	10.67	10.31	10.32	8.63	11.87	9.64
Floodplain_score Overall_Score Ranking Remark	1.67	1.67	1.67	1.67	1.67	1.65	2.00	2.00	2.00	2.00	2.00	0.94	0.94	0.92	1 6'0	0.94	0.94	0.94	0.94	0.91	0.62	11.1	11'1	1.11	11.11	1.11	11.1
% Area in X	100.00%	100.00%	100.00%	100.00%	100.00%	98.76%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	96.96%	99.41%	99.87%	99.94%	100.00%	100.00%	96.49%	66.16%	100.00%	100.00%	100.00%	100.00%	99.84%	99.96%
Area in XZone Area in AEZone % Area in X	0:00	0.00	0.00	0.0	0.00	0.03	0:00	0.00	0.00	0.00	0.00	00.0	00.0	0.22	0.10	0.01	0.01	0000	0.00	0.34	3.61	0.00	0:00	0.00	0.00	0.01	0.00
	5.94	0.70	11.28	10.55	4.66	2.64	5.81	3.42	0.56	09.0	0.81	8.90	0.73	71.7	11'21	10.11	9.17	5.67 1.99	1.57	9.30	7.06	4.62	3.47	2.01	3.82	8.15	0.81
HSG_Score	1.49	1.49	2.54	1.49	1.49	1.49	1.67	1.67	1.67	3.33	1.67	0.91	0.91	0.91	16.0	0.91	16.0	19.0	0.91	16.0	0.91	1.11	11.1	1.11	1.11	1.11	1.11
e HSG I	1.00	1.00	1.70	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
on Location_Score HSG HSG_Score	0.63	0.63	1.88	0.63	3.13	3.13	111	1.11	1.11	5.56	1.11	0.43	0.43	1.30	1.30	0.43	0.43	0.43		2.17	2.17	0.48	0.48	0.48	0.48	1.43	1.43
e Location	1.00	1.00	3.00	1.00	5.00	5.00	1.00	1.00	1.00	5.00	1.00	1.00	1.00	3.00	3.00	1.00	1.00	1.00	1.00	5.00	5.00	1.00	1.00	1.00	1.00	3.00	3.00
g Shading_Scor	1.96	0.78	1.76	1.57	1.96	1.96	2.38	2.14	2.14	0.95	2.38	0.85	0.85	0.85	0.94	0.94	0.94	0.94		0.94	0.94	1.23	0.68	0.68	1.37	1.37	1.37
e Shadin	10.00	4.00	00.6	8.00	10.00	10.00	10.00	9.00	9.00	4.00	10.00	00.6	9.00	9.00	10.00	10.00	10.00	10.00	9.00	10.00	10.00	9.00	5.00	5.00	10.00	10.00	10.00
DC_Scor	0.00	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	2.50	2.50	0.00	0.00	0.0	00.0	2.50	2.50	0.00	0.00	0.00	0.00	0.00	0.00
Damage Center	0	0	0	0	0	et	0	0	0	0	0	0	0	1	1	0	0	o c	0	ŗ	1	0	0	0	0	0	0
BMPtypes_Score	0.48	0.95	2.38	2.38	1.90	1.90	2.94	1.76	2.35	1.18	1.76	0.65	0.65	0.87	1.09	1.09	1.09	1.09	0.43	1.09	1.09	1.25	0.31	0.31	1.56	1.56	1.25
Avai BMPTypes	1	2	5	S	4	4	S.	3	4	2	3	m	3	4	5	5	5	ۍ م	2	S	5	4	1	1	5	IJ	4
Outfall_Score	111	0.00	2.22	0.00	3.33	3.33	2.00	2.00	0.00	6.00	0.00	0.29	0.00	1.47	1.47	1.47	1.47	0.29	0.29	1.47	1.47	0.97	1.29	1.29	0.00	1.61	1.61
Outfall	1	0	2	0	з	e	1	1	0	3	0	1	0	5	5	5	5		1	5	5	3	4	4	0	ß	ß
BMPfootprint_Score Outfall Outfall Score Avai BMPTypes BMPtypes_Score DamageCenter DC_Score Shading Shading_Score	1.66	0.19	3.15	2.95	1.30	0.75	5.19	3.05	0.50	0.54	0.72	1.07	60.0	0.89	2.07	1.22	1.10	0.68	0.19	1.16	1.28	1.26	0.94	0.55	1.04	2.22	0.22
DA_ID_B/	070-01	070-02	0.70-03	070-04	070-05	070-06	150-01	150-02	150-03	150-04	150-05	260-01	260-02	260-03	260-04	260-05	260-05	260-06 260-07	260-08	260-09	260-10	270-01	270-02	270-03	270-04	270-05	270-05

Appendix D. Subtask 3.2 - GSI Prioritization and Cost Report

Subtask 3.2 – GSI Prioritization and Cost Report

Existing data and modeling tools were used to identify and model Green Stormwater Infrastructure (GSI) best management practices (BMPs) in eight high priority areas for reducing nonpoint source pollutants including *E. coli* bacteria, and nutrients. First, geospatial information systems (GIS) data was used to assess these high priority areas or subbasins in regard to soil type, land use, impervious cover, existing stormwater infrastructure, topography, aerial imagery, etc. and to delineate drainage areas of potential GSI BMP sites within them. A dataset of potential GSI implementation opportunities sites were identified for each of the eight high priority areas. The process of choosing a site from the dataset of potential sites is outlined in the Technical Memorandum for HSPF Modeling for BMP Performance Evaluation. One site in each subwatershed was chosen to model. The chosen sites were modeled with GSI BMPs identified and pollutant reduction was established for each site. Concept designs were then developed using the site GSI BMP model parameters, and cost estimates calculated for the final set of implementation sites. This report includes site-scale models, concept-level designs, and cost information for each of the potential GSI projects identified in the dataset. It also prioritizes these GSI opportunities based on stakeholder feedback.

The Concept Designs and Costs for the eight modeled sites are documented in the site pages below. The Broussard Group, Inc. dba TBG Partners (TBG) completed the concept design illustrations for seven prioritized GSI sites that are described in the Technical Memorandum for HSPF Modeling for BMP Performance Evaluation. Only conceptual level GSI site layouts and dimensions were developed. Site 70 concept design was done in-house by the San Antonio River Authority and site 560 was started in-house and completed by TBG, they were used as a model for the TBG work.

The spatial coverage of the GSI BMP footprints were provided in the memorandum to show an approximate location of the features. These areas were used to calculate the potential water quality volume managed by each based on a few additional design assumptions. Detailed stage storage-discharge tables were not calculated for bioswale and bioretention features because detailed site topography and geotechnical data for the selected sites are not yet available. The assumptions used for developing cost estimates are included in Appendix E1.

This report does not provide any assumption for the depth of water storage above the soil media and underdrain layers. The available topography was reviewed from the DEM source used for the development of the BMP model in order to estimate necessary depressions down to the surface of the soil media layer for each of the conceptual bioretentions and bioswales. These assumptions were made to allow modification of the spatial footprints of the BMPs in the BMP Performance Modeling Memorandum used to ensure that flow from streets, athletic fields, and parking lots could effectively discharge into the bioswale and bioretention features. While this may slightly reduce (smaller footprint) or increase (larger footprint) the water storage capacity of the soil media and infiltration layers of the bioretention and bioswales, the difference can be made up for by adjusting the depth of the infiltration media and/or the soil media. This was done on Subbasin 420 for the south bioretention feature to account for limited space within the curb islands. Every attempt was made to adjust the outer footprints of the features to the extent practicable to facilitate flow into the systems and provide the most flexibility for adjusting media depths to achieve the target water quality volume management and to ensure that ponding depths would not exceed 2.5 feet. Both spatial and vertical volumes and dimensions will need to be adjusted to account for presently unknown variables and constraints including detailed topography, underground utilities, and the infiltration capacity of the native soils to construct these GSI BMPs.

The priority list below is in order of level of interest in implementation based on the stakeholder feedback received and documented in the subsequent Stakeholder Report. Stakeholders' preference was

based on level of interest, cost consideration, triple bottom line (TBL) benefits, multi-purpose functions, convenience, operation and maintenance, and adjacent activities with local schools.

The Brooks Development Authority site was chosen to calibrate the model. It is an early adopter of GSI outlining it in their development guide and installing GSI using River Authority Watershed Wise Rebate funding. The Brooks project discussed below was designed from BMPs used in model calibration resulting in much larger GSI best management practices (BMPs) that treat more than the required water quality volume (WQV) that other sites were designed to treat. It is listed at the bottom of the priority list due to the cost of the oversized GSI BMPs as well as maintenance concerns being in the center median.

The City's Parks and Recreation and Public Works Departments are also interested in implementing GSI on redevelopment and future projects. They looked for alignment with their priorities as well as current and future planned and bond projects. Public Works' goal is to use the River Authority's high priority/impaired subbasins map as a guide to add GSI to all projects in these areas. Meeting with the San Antonio Housing Authority revealed that they are interested in incorporating GSI BMPs in future projects if their private partners are also interested. They are willing to discuss retrofitting existing projects internally as funding is available.

The overall ranking of the projects is listed below:

Ranked #1: Site 70 – Windsor Park ranked number one because the City of San Antonio Parks and Recreation Department has this project currently planned for retrofitting. The current plan is to return an old tennis court in disrepair to native vegetation. This is a great opportunity to turn it instead into a GSI feature like the extended detention basins and bioswales modeled in this neighborhood park.

Ranked #2: Site 310 – Lee's Creek Park, with recent investment and plans may be an opportunity to work with Public Works and grant, bond, and other funding opportunities.

Ranked #3: Site 260 – Monterrey Park, may be an opportunity with the trail head bond work being planned.

Ranked #4: Site 150 – The City of San Antonio's Public Works Department ROW in Terrell Heights Community Garden. The City is interested in reviewing the community feedback, largely in support, and project details for potential implementation. Their goal is to align with the City's Water Quality Visioning Document and plan projects in the high priority subbasins, which this project is. In meeting with department director and managers to discuss opportunities they looked at the ROW opportunities relative to existing and future bond projects opportunities to add GSI BMPs.

Ranked #5: Site 270 – Rosedale Park currently has no upcoming work considered. When future work is planned GSI opportunities will be considered.

Ranked #6: Site 330 – San Antonio Housing Authority's Pin Oak II Apartments will be discussed with their Asset and Property Management Departments. SAHA is interested in implementing GSI in future funded construction projects. Due to funding allocation processes it is easier for them to build GSI into design plans at the start of a project as opposed to a retrofit project.

Ranked #7: Site 420 – San Antonio Housing Authority's Tampico Street Apartments is currently in construction and the real estate transaction is closed, so it is not possible to implement the proposed GSI BMP features at this time. It could be part of future retrofit conversations with asset and property management departments. SAHA is interested in implementing GSI in future development in coordination with their private partners and the River Authority.

Ranked #8: Site 560 – The City of San Antonio's Public Works Department ROW in the Brooks Development Authority on Sydney Brooks and City-Base Landing isn't an ideal candidate because of it being a relatively new construction project and operations and maintenance of the BMP in the

median would be difficult. A separate meeting with the Brooks Development Authority, their consultants, and the landowner resulted in similar concerns with additional design and construction concerns due to it being in the center of the road. They are looking for opportunities similar to the three current San Antonio River Authority GSI/LID Rebate projects in Brooks.

Next, are the site one-pagers for each of the eight modeled sites showing details on the GSI BMPs concept design and cost assumptions.

USAR Subbasin 70: Windsor Park

City of San Antonio Parks and Recreation

GSI Description: Windsor Park's bioswales treat and convey stormwater runoff from the surrounding neighborhood into extended detention basins.

Subbasin 70 Opinion of Probable Cost:

		totals		Bioswale	\$	22,004.44	\$	102,687.38
		totals		Extended Detention	\$	50,379.00	\$	235,102.00
	Summary:	Subtotal		10% Mobilization, Insurance	30% Co	ontingency	Total	
	North Bioswale	\$	38,570.00	\$ 3,857.0) \$	11,571.00	\$	53,998.00
	South Bioswale	\$	34,778.13	\$ 3,477.8	1\$	10,433.44	\$	48,689.38
	North Extended Detention	\$	71,183.50	\$ 7,118.3	5\$	21,355.05	\$	99,656.90
	South Extended Detention	\$	96,746.50	\$ 9,674.6	5\$	29,023.95	\$	135,445.10
totals	Bioswale	\$	73,348.13	\$ 7,334.8	1 Total		\$	337,789.38
totals	Extended Detention	\$	167,930.00	\$ 16,793.0	כ			
	Maintenance Summary:	Annual Mainter	nance	Intermediate Maintenance	Replace	ement		
		(Total Cost Per	Year on Average)	(Once every 6 to 10 Years)	(After 2	20 Years of Service)		
	North Bioswale	\$	7,620.00	\$ 15.0) \$	50,850.00		
	South Bioswale	\$	6,286.50	\$ 15.0) \$	41,951.25		
	North Extended Detention	\$	1,156.00	\$ 4,794.0) \$	21,862.00		
	South Extended Detention	\$	4,624.00	\$ 19,176.0) \$	87,448.00		
totals	Bioswale	\$	13,906.50	\$ 30.0) \$	92,801.25		
totals	Extended Detention	\$	5,780.00	\$ 23,970.0) \$	109,310.00		
		\$	19,686.50	\$ 24,000.0) \$	202,111.25		

Subbasin 70: Bioswales (North and South) soil media is 2 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with a porosity of 0.4. Extended Detention Basin North depth is 3.5 ft, South depth is 4 ft.

USAR Subbasin 150: Terrell Heights Community Garden

City of San Antonio Public Works

GSI Description: Terrell Heights Community Garden is in a City of San Antonio right-of-way traffic island at Larchmont Drive and Greenwich Blvd. The GSI BMP proposed would capture runoff from all three surrounding streets and treat it in a bioretention basin.

Subbasin 150 Opinion of Probable Cost:

Summary:	Subtotal	10% Mobilization, Insurance	30% Contingency	Total
Bioretention	\$ 199,848.00	\$ 19,984.80	\$ 59,954.40	\$ 279,787.20
			Total	\$ 279,787.20
Maintenance Summary:	Annual Maintenance (Total Cost Per Year on Average)	Intermediate Maintenance (Once every 6 to 10 Years)	Replacement (After 20 Years of Service)	
Bioretention	\$ 22,920.00	\$ 35,280.00	\$ 122,040.00	<u> </u>

Subbasin 150: Soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 260 North: Monterrey Park

City of San Antonio Parks and Recreation

GSI Description: Monterrey Park's proposed bioretention basin would treat runoff from Fortuna Street adjacent to it as well as runoff from the soccer field.

Subbasin 260 North/South Opinion of Probable Cost:

Summary:	Subt	otal	10% Mo	bilization, Insurance	30%	Contingency	Total	
North Bioretention	\$	111,543.75	\$	11,154.38	\$	33,463.13	\$	156,161.25
South Bioretention	\$	571,973.38	\$	57,197.34	\$	171,592.01	\$	800,762.73
	\$	683,517.13	\$	68,351.71	Tota	l	\$	800,762.73
					\$	205,055.14		
Maintenance Summary:	Annu	Jal	Interme	diate Maintenance	Repla	acement		
	Mair	ntenance	(Once e	very 6 to 10 Years)	(Afte	r 20 Years of		
	(Tota	al Cost Per			Servi	ce)		
	Year	on Average)						
North Bioretention	\$	11,078.00	\$	17,052.00	\$	58,986.00		
South Bioretention	\$	52,763.75	\$	81,217.50	\$	280,946.25		
	\$	63,841.75	\$	98,269.50	\$	339,932.25		

Subbasin 260 (North and South): Soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 260 South: Monterrey Park

City of San Antonio Parks and Recreation

GSI Description: Monterrey Park's proposed southern bioretention basins are placed in the current parking islands and would treat runoff from Fortuna Street adjacent to it as well as runoff from the soccer field.

Subbasin 260 North/South Opinion of Probable Cost:

Summary:	Subt	otal	10% Mo	bilization, Insurance	30%	Contingency	Total	
North Bioretention	\$	111,543.75	\$	11,154.38	\$	33,463.13	\$	156,161.25
South Bioretention	\$	571,973.38	\$	57,197.34	\$	171,592.01	\$	800,762.73
	\$	683,517.13	\$	68,351.71	Tota	I	\$	800,762.73
					\$	205,055.14		
Maintenance Summary:	Ann	Annual		Intermediate Maintenance		acement		
	Mair	ntenance	(Once every 6 to 10 Years)			er 20 Years of		
	(Total Cost Per				Servi	ce)		
	Year	on Average)						
North Bioretention	\$	11,078.00	\$	17,052.00	\$	58,986.00		
South Bioretention	\$	52,763.75	\$	81,217.50	\$	280,946.25		
	\$	63,841.75	\$	98,269.50	\$	339,932.25		

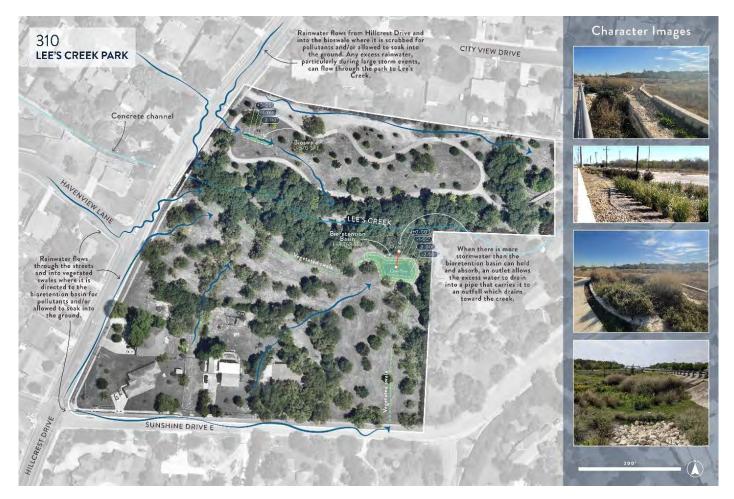
Subbasin 260 (North and South): Soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 270: Rosedale Park

City of San Antonio Parks and Recreation

GSI Description: Rosedale Park's bioretention basin would treat stormwater runoff flowing down Ruiz Street adjacent to it.

Subbasin 270 Opinion of Probable Cost:


Summary:	Subto	tal	10% Mob	lization, Insurance	30% (Contingency	Total	
Bioretention	\$	100,545.31	\$	10,054.53	\$	30,163.59	\$	140,763.44
					Total		\$	140,763.44
Maintenance Summary:		Cost Per Year		ate Maintenance ery 6 to 10 Years)		cement r 20 Years of ce)		
Bioretention	\$	6,898.92	\$	10,619.28	\$	36,734.04	_	

Subbasin 270: Soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 310: Lee's Creek Park

City of San Antonio Parks and Recreation

GSI Description: Lee's Creek Park, with recent investment and plans may be an opportunity to work with Public Works and grant, bond, and other funding opportunities.

Subbasin 310 Opinion of Probable Cost:

Summary:	Subtota	al	10% Mobili	zation, Insurance	30% (Contingency	Total	
Bioswale	\$	28,630.63	\$	2,863.06	\$	8,589.19	\$	40,082.88
Bioretention	\$	88,852.75	\$	8,885.28	\$	26,655.83	\$	124,393.85
					Total			
Maintenance Summary:	Annual	Maintenance	Intermedia	te Maintenance	Repla	cement		
	(Total C	ost Per Year	(Once ever	ry 6 to 10 Years)	(Afte	r 20 Years of		
	on Aver	age)			Servio	ce)		
Bioswale	\$	1,090.61	\$	1,678.74	\$	5,807.07		
Bioretention	\$	7,189.24	\$	11,066.16	\$	38,279.88		
			\$	12,744.90				

Subbasin 310: The bioswale soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with a porosity of 0.4. Length 60 ft, bottom width 5 ft, side slope 3:1, depth of swale 0.75 ft. The bioretention soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr, and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 330: Pin Oak II Apartments

San Antonio Housing Authority

GSI Description: Pin Oak II Apartments would be a retrofit treating runoff from a neighboring parking lot to the west and from most of the site's parking lot and streets.

Subbasin 330 Opinion of Probable Cost:

Summary:	Sul	ototal	10% Mobili	zation, Insurance	30%	Contingency	Total	
Bioswale	\$	91,615.75	\$	9,161.58	\$	27,484.73	\$	128,262.05
Bioretention	\$	108,294.10	\$	10,829.41	\$	32,488.23	\$	151,611.74
					Total			
	_							
Maintenance Summary:	Annual Maintenance (Total Cost Per Year on Average)			te Maintenance y 6 to 10 Years)		acement er 20 Years of ice)		
Bioswale	\$	5.73	\$	8.82	\$	30.51	1	
Bioretention	\$	4,051.11	\$	6,235.74	\$	21,570.57		
			\$	6,244.56				

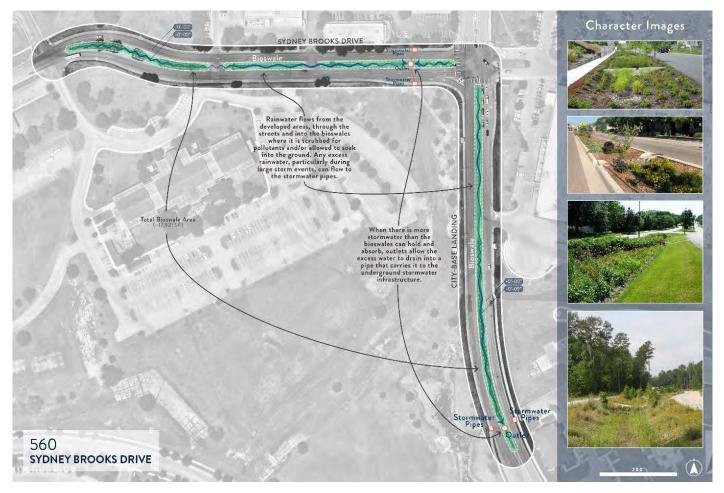
Subbasin 330: Soil media is 3 ft deep with a porosity of 0.35 and an infiltration rate of 1.5 in/hr (south bioretention), 0.1 in/hr (north bioretention), and the underdrain layer is 1.5 ft deep with porosity of 0.4.

USAR Subbasin 420: Tampico Apartments

San Antonio Housing Authority

GSI BMP Description: Soil media is 3 ft deep for north bioretention and 4 ft deep for south bioretention so that sufficient WQV can be provided. Porosity is 0.35 and the infiltration rate is 1.5 in/hr. The underdrain layer is 1.5 ft deep with a porosity of 0.4.

Subbasin 420 Opinion of Probable Cost:


Summary:	Subt	otal	10% Mo	bilization, Insurance	30% Co	ontingency	Total	
West Bioretention	\$	75,979.50	\$	7,597.95	\$	22,793.85	\$	106,371.30
South Bioretention	\$	61,843.75	\$	6,184.38	\$	18,553.13	\$	86,581.25
	\$	137,823.25	\$	13,782.33	Total		\$	86,581.25
					\$	41,346.98		
Maintenance Summary:	, , , , , , , , , , , , , , , , , , , ,		Intermediate Maintenance		Replac	ement		
			aintenance (Once every 6 to 10 Years)			20 Years of Service)		
	(Tota	al Cost Per						
	Year	on Average)						
West Bioretention	\$	5,875.16	\$	9,043.44	\$	31,282.92		
South Bioretention	\$	4,834.21	\$	7,441.14	\$	25,740.27		
	\$	10,709.37	\$	16,484.58	\$	57,023.19		

Subbasin 420: Soil media is 3 ft deep for north bioretention and 4 ft deep for south bioretention so that sufficient WQV can be provided. Porosity is 0.35 and the infiltration rate is 1.5 in/hr. The underdrain layer is 1.5 ft deep with a porosity of 0.4.

USAR Subbasin 560: Sydney Brooks Drive

City of San Antonio Parks and Recreation/Brooks Development Authority

GSI Description: The BMPs chosen for the Sydney Brooks Drive and City Base Landing site were used to calibrate the model by comparing the GSI modeling results to the site-scale modeling done previously using 2D GSSHA modeling. At the time, a larger BMP footprint was selected due to the use of 1.8-inch design rainfall and to maximize stormwater treatment (instead of just to treat the WQV, the BMP was sized based on available footprint). Given that this site is used for model calibration, the same BMP layout had to be used and sized for GSI modeling in order to compare to the GSSHA output. Subsequent sites were sized using the WQV.

Subbasin 560 Opinion of Probable Cost:

Summary:	Subto	tal	10% Mobiliz	ation, Insurance	30% Co	ontingency	Total	
ROW Bioswales	\$	1,879,920.00	\$	187,992.00	\$	563,976.00	\$	2,631,888.00
					Total		\$	2,631,888.00
Maintenance Summary:	Maintenance (Total Cost Per Year			e Maintenance / 6 to 10 Years)	•	ement 20 Years of 2)		
ROW Bioswales	on Ave \$	34,196.64	\$	52,637.76	\$	182,083.68		

Subbasin 560: Bioswales soil media depth is 2 ft, with a porosity of 0.35 and infiltration rate is 1.5in/hr. The underdrain layer is 1.5 ft with a porosity of 0.4.

Appendix E1. GSI Master Plan Opinion of Probable Construction Cost (OPCC) Assumptions

The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs.

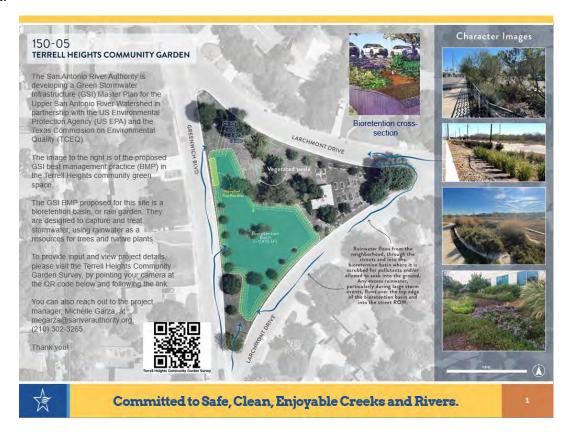
- 1. OPCC classified as an AACE Class 4 Estimate with an expected accuracy range of -15% + 40%. A 30% contingency factor was utilized to formulate the OPCC.
- 2. The River Authority's OPCC does not include costs associated with engineering fees, permits, surveying, etc.
- 3. The River Authority's OPCC utilized a 10% factor for contractor mobilization, bond, and insurance.
- 4. All estimated maintenance and replacement costs utilized the unit costs provided in the San Antonio River Basin Low Impact Development Technical Design Guidance Manual.
- 5. All quantities for cost calculation were correlated with the report by LAN and the conceptual drawings.
- 6. Demo quantity referenced the amount of potential cut with a 1.15 factor to account for extra grading and excavation possibly required.
- 7. Geotextile fabric was assumed to line the bottom and side walls of all bioretention and bioswale basins.
- 8. Underdrain drainage layers were assumed to be 1.5' for all bioretention and bioswale basins.
- 9. Soil media was assumed at a depth of 2' for all bioretention and bioswale basins.
- 10. Porosity was calculated at 0.35 for soil media and mulch, while 0.4 was used for gravel layers.
- 11. The open depth of each bioretention and bioswale basin was assumed to be 9".
- 12. Underdrain pipes were included for all bioretention basins and all bioswales assumed no inclusion of underdrains.
- 13. The 4" soil media barrier for bioretention and bioswales included 2" of washed sand over 2" of #8 choking stone.
- 14. PVC piping underdrain estimate include fittings and PVC glue.
- 15. Extended detention basins assumed hydromulching as the form of vegetation establishment. This also includes an allowance for watering the areas.
- 16. Reinforced concrete pipe (RCP) price includes the cost for connecting to the downstream storm drain system.
- 17. Restoration allowance includes the cost for SWPPP installation on-site.

Appendix E. Workshop 1: Terrell Heights Neighborhood Association (THNA) Board Meeting on February 28, 2021, on Site 150, City of San Antonio Right-Of-Way (ROW).

Subject:	oject: [EXTERNAL] Invitation: THNA Check-in @ Sun Feb 28, 2021 2:30pm - 3:30pm (CST) (megarza@sariverauthority.org)			
Start:	Sun 2/28/2021 2:30 PM			
End:	Sun 2/28/2021 3:30 PM			
Recurrence:	(none)			
Meeting Status: Accepted				
Organizer:	mariverduzco74@gmail.com			
External Email:	Beware of links/attachments.			
You have been	n invited to the following event.			
I HINA Chec	k-in			
When	:k-in Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago			
	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet			
When	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago			
When	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet			
When Joining info	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet.google.com/umi-ggze-szk			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet <u>meet.google.com/umi-ggze-szk</u> megarza@sariverauthority.org			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet <u>meet.google.com/umi-ggze-szk</u> megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet <u>meet.google.com/umi-gqze-szk</u> megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet <u>meet.google.com/umi-qqze-szk</u> megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet.google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet.google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com • janetgrojean@gmail.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com • janetgrojean@gmail.com • katelgriffin@gmail.com • hilda@8aelectric.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com • janetgrojean@gmail.com • katelgriffin@gmail.com • hilda@8aelectric.com • sjntemple@yahoo.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com • janetgrojean@gmail.com • janetgrojean@gmail.com • katelgriffin@gmail.com • hilda@Baelectric.com • sjntemple@yahoo.com			
When Joining info Calendar	Sun Feb 28, 2021 2:30pm – 3:30pm Central Time - Chicago Join with Google Meet meet google.com/umi-ggze-szk megarza@sariverauthority.org • mariverduzco74@gmail.com - organizer • marymiles1234@gmail.com • anna.kehde@gmail.com • janetgrojean@gmail.com • janetgrojean@gmail.com • katelgriffin@gmail.com • hilda@8aelectric.com • sjntemple@yahoo.com • kikimbell@yahoo.com			

kiriethgrace@gmail.com
 megarza@sariverauthority.org

Stakeholder Workshop Outline:


The purpose is to share the project with property owners and stakeholders (Terrell Heights Community Garden and Terrell Heights Neigborhood Association Members) to gather feedback and input on the work done to identify and model GSI/LID BMPs on public property as well as implementation potential.

- Overview of the GSI Master Plan EPA 319 Grant Project
- · Review GSI BMP opportunity in Terrell Heights Community Garden
 - Provide an overview of the site's water quality modeling, triple bottom line analysis, and concept-level designs
- Gather feedback on the desire to have the rain garden included in the neighborhood's community garden green field area.

See Appendix H for the presentation given to the Terrell Heights Neighborhood Association and Community Gardeners.

Appendix F. Terrell Heights ROW Signage

Front:

Back:

Bioretention Basins are designed to: ·Capture floatable trash and other pollutants ·Reduce sediment, bacteria, chemicals Moderate stormwater temperature ·Provide habitat and shade Alleviate flooding POLLUTANT REMOVAL DEPTH PATHOGENS OIL/GREASE SURFACE/MULCH METALS TSS PATHOGENS PHOSPHORUS 1-FOOT 2-FEET NITROGEN 3-FEET THERMAL LOAD 4-FEET PREPARED IN COOPERATION WITH THE TEXAS \$€PA COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY RIVER AUTHORITY tal Protection To learn more visit: sariverauthority.org/sustainability 澺 Committed to Safe, Clean, Enjoyable Creeks and Rivers.

Appendix G. Terrell Heights Neighborhood Survey Link, Image, and Questions/Responses.

Terrell Heights Neighborhood Survey:

Terrell Heights Neighborhood Survey

Terrell Heights Larchmont Island / Green Stormwater Infrastructure (GSI)

Please provide your input after reviewing the San Antonio River Authority's proposal for Green Stormwater Infrastructure (GSI) and the General Presentation for maintenance. A follow up meeting with the San Antonio River Authority will be held on April 6th at 6PM. MEETING LINK HERE: https://drive.google.com/file/d /1LfAXtHP1TOKoaobh-aEWPk7wrRv8Z5iN/view?usp=sharing.

San Antonio River Authority's Presentation for GSI Master Plan Grant Project: https://drive.google.com/file/d /1JGRsvMSkcE2myCxaranEK9FwxuMasbO5/view?usp=sharing

Here is a link to a map with other green infrastructure projects the SA River Authority has built or funded. It shows some examples that you can visit. https://www.sariverauthority.org/be-river-proud/sustainability

General presentation on maintenance for Green Stormwater Infrastructure: https://drive.google.com/file/d/12p48Ff-qu9CS0dZ1q1lsMK5FZNVdjERJ/view

Terrell Heights Neighborhood Survey Questions/Responses as of 5/14/2021:

1. Do you have concerns about the addition of a bioretention area to this green space?

No, it is a great idea

Terrific idea as long as it fits the natural aesthetic of the area.

Will water flow change to flood our streets? Will this affect the community garden?

No

No, I think it sounds like a welcome addition

Yes, really just a lot of questions. Who will be doing the ongoing maintenance stated in the presentation? Will this increase more mosquitos or flies? How will the community be able to use the

space or will it be for looks only and not be able to use for kids to play, etc? Are there examples of this in San Antonio we can go look at to see what we are signing up for?

No. I'm excited about the prospect and would like to be involved with more conversations. Many areas of the TH neighborhood would benefit during rainfall events from the building of bioswales and rain gardens instead of flashy flow events. I'd love to see bioretention be built into mini roundabouts and traffic calming and pedestrian crossings.

No. I think it is a great idea.

yes. not clear on exactly how it works and would look. we don't get much rain.

Yes

I live at 607 Greenwich Blvd, directly across from the proposed bio retention area. My concerns are 1) standing water and increase in the mosquito population 2) the native soil in this area is clay that expands when wet, how will this be dealt with? 3) aesthetics - what exactly will I be seeing when I look out my front window? 4) red-shouldered hawks currently use the green space for hunting and they perch in the existing trees; what will happen to them? 5) squirrels use the acorns from the planted oaks as a food source; what will happen to them?

Yes. Sounds like a good idea, but will there be standing water? The runoff in the street: where does it go? Will the trees remain: lots of wildlife use them now.

No, sounds like a good idea

I'm excited we would have this in our neighborhood.

I am a little concerned this will take away open space that is currently used for playing by neighborhood children. I am also concerned with maintenance once this is set up. Will this be maintained regularly?

No concerns

No, would love it to happen

Mosquitoes

Yes, a few, though it really pertain to design, which is not determined at this time. E.g. - how will output water flow and where will it flow to? Concerned this will affect my front-of-house space in the street in front of our house. This space is DIRECTLY across the street from us. Also, how will our property value and taxes be affected? Will this cause additional puddles & flooding after rain events, right around the island and in front of our house? How will it be maintained by COSA? Will it be an eyesore? Will they repave the road on Greenwich, as right now it's plagued by puddles and potholes. How long will construction last? Will it be a noise pollutant? I have a baby whose room is on the street side, so this is of concern to me in many ways.

No

Yes. Effective bioretention requires proper soil infiltration or a nearby storm sewer outfall. The nearest storm sewer in the area appears to be approximately 1800 ft West of the park along N. New Braunfels. After reviewing the SARA presentation, it seems that they intend for the storm water runoff to infiltrate. The Terrell Heights area is largely build on hard packed Houston Clay that has an extremely low (near zero) infiltration rate. Unless the SARA intends to utilize underground rainwater catchment & a pump to dry the retention area, the park will tend to hold water for extended periods of time. I also have concerns about planting, maintenance, and pest management.

No, I think it's a great idea.

My only concern is that the designated people take proper care of it over time.

No concerns.

No

Feasibility and effectiveness

How will the project be funded and what support is available in maintaining the vegetation? Is there a time frame to complete the project? Can the project be scaled down to not cover the entire perimeter of the island? Will we be able to have some educational signage placed on the island to educate the residents about how to create rain gardens in their own landscapes to manage storm-water runoff.

No

2. What do you like about the proposed project?

It is an innovative way to collect our precious rain water and conserve water.

Green, green, green.

That it is a GREEN initiative.

Beneficial

We need to be utilizing our green spaces to help the environment in a nice way

The clean look, how it helps with flood prevention, natural habitat and landscaping adds value and benefits the environment.

Excited to see forward thinking, ecoconscious ideas be brought to the neighborhood to slow the flow of water during rainfall events since this neighborhood does not have storm sewers. This is an aestheticly pleasing and beneficial change instead of adding storm sewers.

sustainability and environmental awareness.

environmentally friendly.

I think the traffic islands in Terrell Heights in general are in need of a master plan to improve them so that they are an asset to the neighborhood instead of being eyesores. I like that we are trying to think creatively, but also think this project is not what is needed at the Larchmont island

A natural (green) approach to slowing down and cleaning urban runoff. Maybe increase my property value? More diverse vegetation in the green space than currently. Maybe attract more birds and small animals. Overall I like the concept of a bio retention area.

Keeping contamination out of the water system.

added plants

Shows sustainable ways of catching water and reusing. Can be beautiful and better than just empty lot (at that end of the circle).

I like the fact that it is environmentally conscious and will help with rainwater.

Seems like it will help the space look better and also help drain water from the roads

Collection of rainwater, eco habitat, more plants on island. Enhance the education of ecology to the neighborhood. Lovely addition to the community garden on the island

The beauty of it

If it's attractive and enhances the space, then I would like that. It's hard to know what it will look like without a mock-up and real model to judge by.

Beautification and helping with drainage

If properly designed, the project would beautify a portion of the intersection that is currently just a grassy area.

The project serves a common good for the community.

I love that it's an environmentally friendly option.

I like that it's beautifying the neighborhood and that it's good for the environment.

Environmental love

Filtering storm water is a good thing

I support the concepts behind constructing bioretention basins on public land and adding a variety of native plants and grasses to the landscape.

Environmental love

3. What would you change if anything?

No

Nothing

I would include our neighborhood to provide a town hall meeting to discuss openly in a forum.

Nothing

Nothing

I don't know enough about it. I think we need a neighborhood meeting from the city to neighbors surrounding the land

Add more faculties into the neighborhood in conjunction with traffic calming mini roundabouts.

Nothing

don't know enough to say.

Look at alternatives to the this BMP feature

Hopefully it will function as designed.

Don't know enough about it to change things.

Add more shade trees and some seating, or a covered seating area

Looks like there is parking. Don't make many places please. Then it looks commercial, and not residential.

Not information information to answer this question.

No

No

Not sure

Would love for it to be designed so that water is not flowing out in front of our house. Would also like for it to possibly be moved more towards the corner of the island, towards Eisenhauer, so it's not directly across from our house. If possible.

More butterfly friendly plants

I'd like to see a geotechnical report for the site as well as a potential for pumped discharge & rainwater harvesting. I'd like to see calculations for the drain-time of the retention basin and would prefer a drain time of 72 hours or less.

Nothing

Nothing

No.

Na

Right project, wrong place

Not sure. Will know after the community input meeting.

Na

4. Do you think this project is feasible?

Yes
Yes
maybe
No
Yes
Don't know.
Yes

I am not sure. I have read through all of the powerpoints, but hard to understand if this will be easily maintained? And how will it affect our daily life?
Yes
Project may be feasible pending further info and evaluation
Yes
Yes
Yes
Yes
No
Yes
Yes

5. Do you know of any funding sources to implement the project or help maintain it if it were constructed?

No
Terrell Heights gardners and neighborhood
no
No
No
No but we have a strong community garden presence so having a twice a year "clean up" would be doable
THNA has funding for maintenance of the existing spaces in the neighborhood and maintains them as well.
No
SAWS has grants sometimes, if we were a non-profit, could also apply to Lowe's and Hone Depot for \$500 a year in supplies. We do this at a lot of school campuses. I train teachers on creating gardens and sustaining them.
No
No
No right now

No	
No	
Terrel Heights Neighborhoo	od Association
Not at this time	
Herb sale	
for teaching purposes.	architecture / landscape architecture might be able to volunteer student help vanting to support a green story fund it in some way and be able to have their
Not at the moment.	
No	
If you have to ask this ques	tion, then the project is infeasible.
NPSOT for plants, City Tre	ee Program, Alamo Area Master Naturalists, Terrell Heights CG
No	

6. THNA Question: In addition to the previous question, would you be willing to volunteer for occasional upkeep of this feature or would you expect the City of San Antonio to provide all maintenance?

I would be happy to volunteer on occasion (3-4 times per year)				
I would be happy to volunteer on occasion (3-4 times per year)				
I would not be able to volunteer				
Not sure but willing to help				
I would be happy to volunteer once per month				
I would be happy to volunteer on occasion (3-4 times per year)				
I would be happy to volunteer on occasion (3-4 times per year)				
I would be happy to volunteer on occasion (3-4 times per year)				
I would be happy to volunteer on occasion (3-4 times per year)				
I think the City of San Antonio should provide all maintenance				
I would be happy to volunteer on occasion (3-4 times per year)				
City should provide maintenance and planning. What is this going to look like in 25/50 years? But I would be willing to help.				
I think the City of San Antonio should provide all maintenance				
I would be able to do twice a year, but not sure about quarterly. I often teach on Saturdays when they do these gardening days.				

I think the City of San Antonio should provide all maintenance

I would be happy to volunteer	on occasion (3-4 times per year)
-------------------------------	----------------------------------

I would be happy to volunteer on occasion (3-4 times per year)

I would be happy to volunteer on occasion (3-4 times per year)

I think the City of San Antonio should provide all maintenance

I would be happy to volunteer once per month

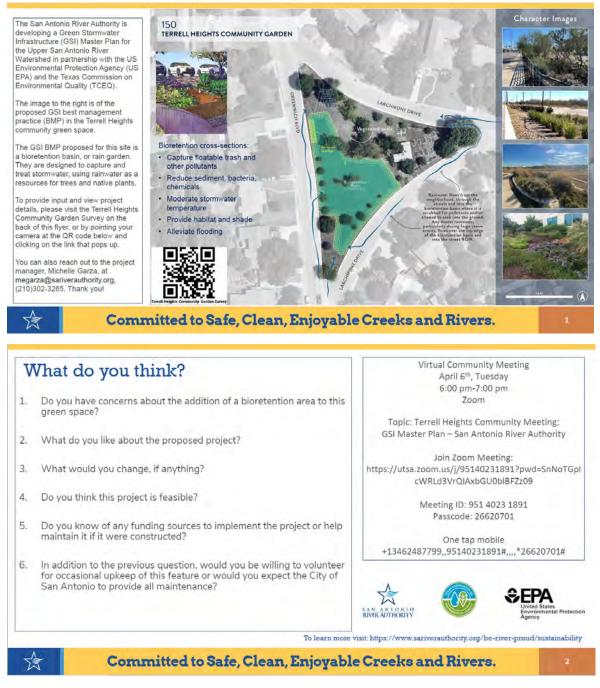
I would be happy to volunteer on occasion (3-4 times per year)

I'm willing to volunteer occasionally but feel the City of SA should provide the majority of the maintenance.

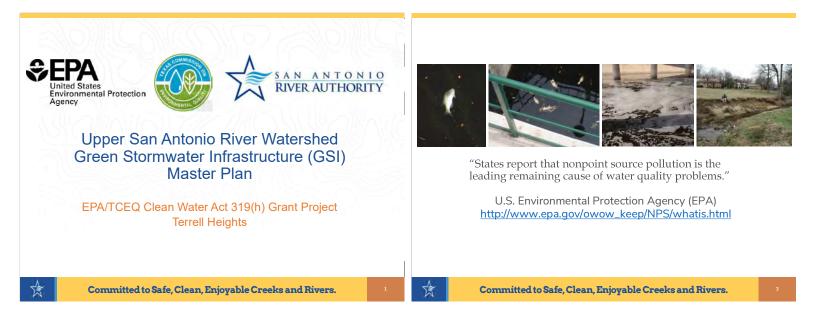
I agree with community involvement (and would be happy to volunteer on occasion) but I don't think it's a proper long-term answer for upkeep and maintenance.

I would be happy to volunteer on occasion (3-4 times per year)

I would not be able to volunteer


I think the City of San Antonio should provide all maintenance

I would be happy to volunteer on occasion (3-4 times per year)


I would not be able to volunteer

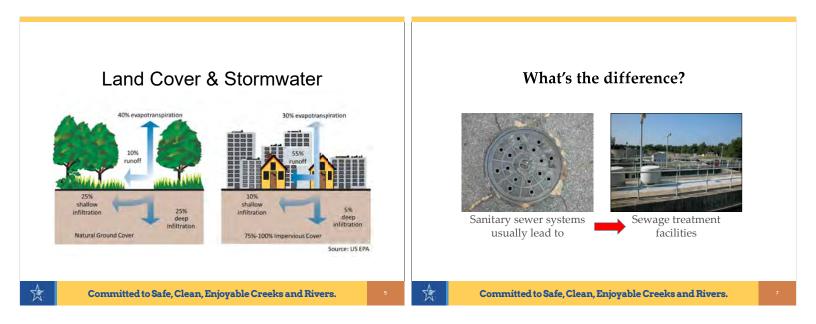
Appendix H. Terrell Heights Community Meeting presentation and flyer held on April 6, 2021.

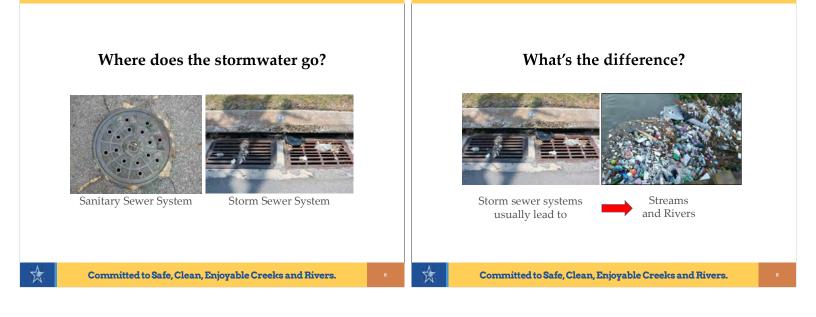
Meeting Invitation Flyer:

Meeting Presentation:

ACKNOWLAGE OF FINANCIAL SUPPORT

PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY


This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement 19-90204 to Texas Commission on Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.



Committed to Safe, Clean, Enjoyable Creeks and Rivers.

5

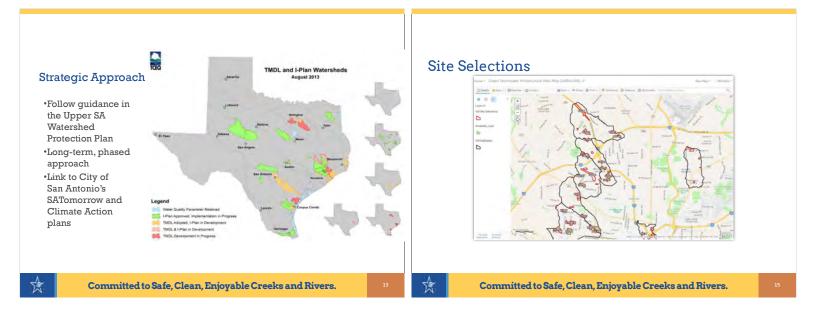
What is Green Stormwater Infrastructure?

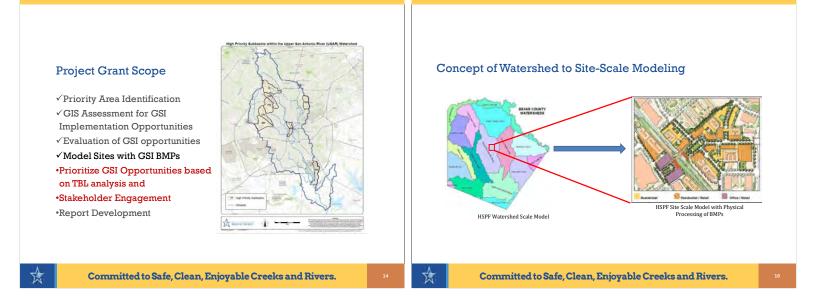
Constructed features that mimic the predevelopment hydrology of the site.

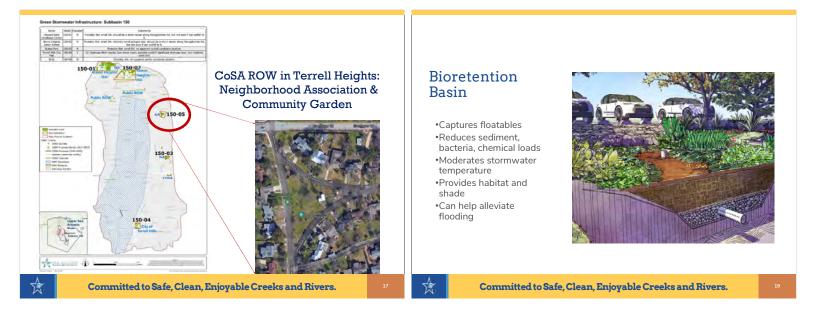
- •Bioretention basins and swales
- •Constructed wetlands •Vegetated filter strips
- •Cisterns
- •Permeable pavement and pavers
- •Disconnected downspouts •Raingardens

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

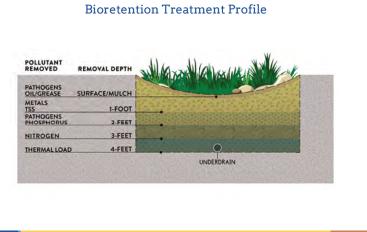
Adding Green Stormwater Infrastructure to a Site

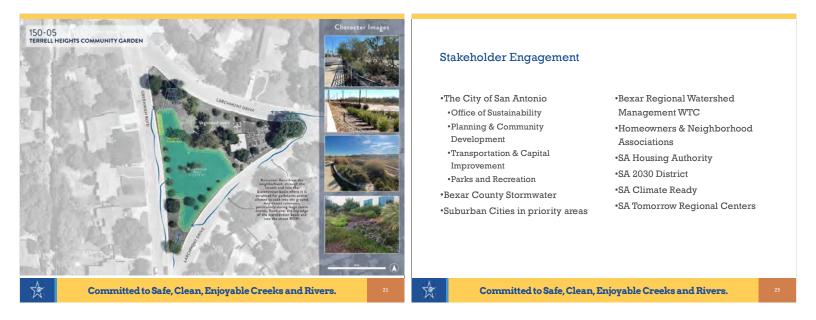

- Use slopes and adjacencies to impervious cover • Should be used as an additional
- amenity • Increased vegetation and shade
- Pollinator habitat
- Reduced pollutant loads from parking surfaces, roads, and roofs




The second

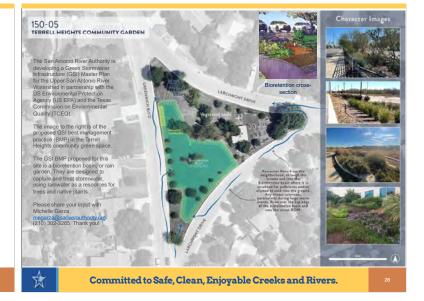
Committed to Safe, Clean, Enjoyable Creeks and Rivers.

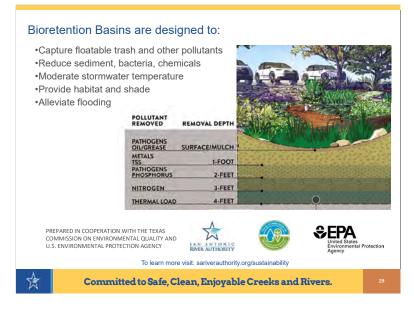



Site 150-05 - Terrell Heights Community Garden

1

T.




Triple Bottom Line (TBL) Analysis of GSI BMPs		N	lajor Deliverables	
 Monetizes the benefits and costs of a economic, social, and environmental. It will denote a broad array of commu assessment) to GSI and LID designs s Air Pollution and Carbon Emissions Flood Risk Mitigation Heat Mortality Reduction Water Quality Improvement Water Quantity Impact 	unity benefits (and cost		 •Analysis •Identify Water Quality High Priority Areas, GIS Data Assessment, GSI Identification & Modeling, Prioritization and Cost Report •Stakeholder Engagement •Community Workshops, present analysis findings in prioritized areas, include feedback in final report •GSI Master Plan •Triple Bottom Line (TBL) and Sustainable Return On Investment (SROI) Evaluation and Report, GSI Master Plan •Final Report 	
Committed to Safe, Clean, E	njoyable Creeks and Rivers. 22	☆	Committed to Safe, Clean, Enjoyable Creeks and Rivers.	24

What do you think?

- •What is your impression of the proposed bioretention area, also known as a rain garden?
- •Do you have concerns about the addition of a bioretention area to this green space?
- •What do you like about the proposed project?
- •What would you change, if anything?
- •Do you think this project is feasible?
- •Do you know of any funding sources to implement the project or help maintain it if it were constructed?

Appendix I. Workshop 2: The City of San Antonio Public Works Department meeting invitation, agenda, and presentation held on March 9, 2021.

Meeting with Robert Reyna, Abigail Bush, Erin Cavazos.

 Michelle E. Garza

 Subject:
 CoSA Public Works Department - Input Requested

 Start:
 Tue 3/9/2021 11:30 AM

 End:
 Tue 3/9/2021 12:00 PM

 Recurrence:
 (none)

 Meeting Status:
 Meeting organizer

 Organizer:
 Michelle E. Garza

 Required AttendeesRoberto Reyna (PWD); Erin Cavazos

Meeting to discuss and plan Public Works workshop for GSI Master Plan input.

Agenda:

From: Michelle E. Garza <<u>megarza@sariverauthority.org</u>> Sent: Thursday, February 11, 2021 3:17 PM To: Roberto Reyna (PWD) <<u>Roberto Reyna@sanantonio.gov</u>> Cc: Erin Cavazos <<u>ecavazos@sariverauthority.org</u>>; Karen Bishop <<u>kbishop@sariverauthority.org</u>> Subject: [ETKENNAL] CoSA Public Works Department - Input Requested

Good afternoon, Roberto,

I hope you are doing well. I am not sure if you remember me, but I've met you at BRWM meetings

I am reaching out to request feedback as part of the next phase of the GSI Master Plan, a EPA/TCEQ 319 Grant, that you may remember from presentations I've made to the BRWM group. We are looking for feedback from property owner/stakeholders on the sites that were modeled. I would like to present the work done on the City ROW sites for feedback in a short virtual workshop. I have attached a brief presentation to give you a visual overview of the project and the sites.

Below is a summary of the grant project and outline of the virtual workshop.

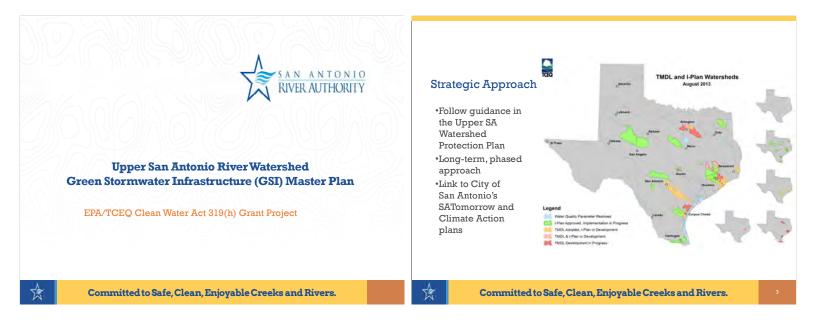
The Upper SA River Watershed GSI Master Plan is an EPA/TCEQ Clean Water Act 319(h) Grant Project. The plan builds on recommendations made in the Upper SA River Watershed Protection Plan and Implementation Plan, Investments SARA has made in water quality models, and watershed master plan integration to develop a GSI Master Plan for the Upper SA River Watershed in Bexar County.

The River Authority is implementing this project to model select locations within targeted sub-watersheds to identify opportunities for implementing GSI and then to share outcomes with key stakeholders toward greater understanding of the opportunities, barriers, costs, etc. A priority is being given to space within public rights of way and/or on public lands. As I mentioned, the River Authority identified and modeled four City parks with GSI BMPs. I would like the opportunity to talk with you and other City of San Antonio Public Works staff whom you recommend regarding the results and the City's thoughts about them.

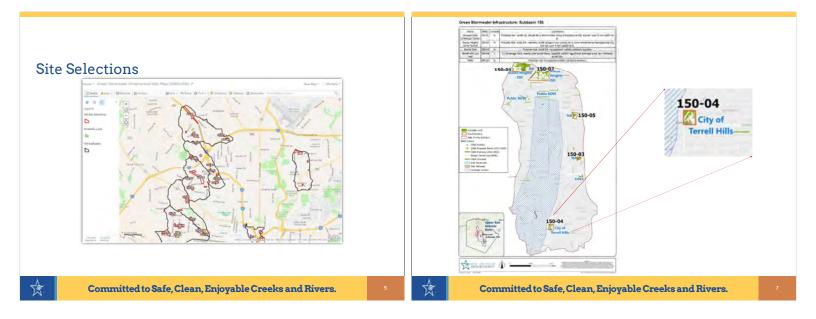
Stakeholder Workshop Outline:

The purpose is to share the project with property owners and stakeholders (CoSA Public Works) to gather feedback and input on the work done to identify and model GSI/LID BMPs on public property as well as implementation potential.

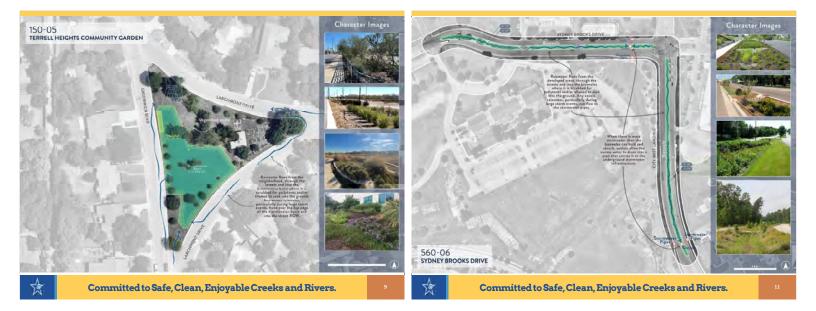
- Overview of the GSI Master Plan EPA 319 Grant Project
- Review GSI opportunities in City ROW sites (Terrell Heights Community Garden (Larchmont Dr. and Greenwich Blvd.) and Sydney Brooks Drive and City-Base Landing)
 Provide an overview of the site's water quality modeling, triple bottom line analysis, and concept-level designs
- Gather feedback on GSI feasibility, funding, and barriers as well as priority of the two potential projects


My goal is to hold this meeting at the end of February, early March timeframe, to stay on the grant project schedule. Please let me know if you'd like to discuss this in more detail. I am happy to set up a quick call or feel free to give me a call at your convenience at 210-302-3265.

I look forward to talking with you.


Thank you for your help.

Michelle E. Garza Stormwater Analyst, Sustainable Infrastructure Unit San Antonio River Authority megarza@sariverauthority.org (210) 302-3265


Meeting presentation (next page):

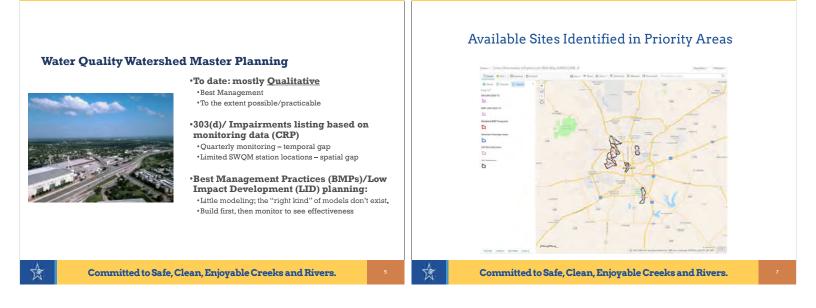
Appendix J: Workshop 3: Brooks Development Authority meeting invitation, participation list, and presentation held on March 25, 2021.

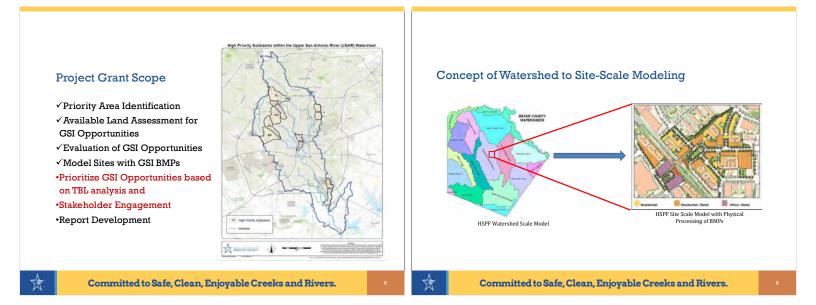
Meeting Participation List:

- Brooks Development Authority
 - o Carlos Salinas, carlos@livebrooks.com
 - Amber Gilbert, amber@livebrooks.com
 - o Mark Cook, mark@livebrooks.com
 - o Tom Garcia, tom@livebrooks.com
- Brooks Development Authority Developer Consultant
 - o Curtis Lee, CLee@pape-dawson.com

Meeting Presentation (next page)

<image/> <image/> <image/> <text><text><text></text></text></text>	 Project Goal Build on recommendations made in the Upper SA River Watershed Protection Plan and Implementation Plan, Investments SARA has made in water quality models, and Watershed master plan integration To develop a Green Stormwater Infrastructure (GSI) Master Plan for the Upper SA River Watershed in Bexar County.
Committed to Safe, Clean, Enjoyable Creeks and Rivers.	Committed to Safe, Clean, Enjoyable Creeks and Rivers.


PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY


This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement 19-90204 to Texas Commission on Environmental Quality. The contents of this document do not necessarily reflect the view and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.

₹**₽**

Stakeholder Engagement			•7	That do you think? What is your impression of the proposed GSI BMPs?	
 The City of San Antonio Office of Sustainability Planning & Community Development Transportation & Capital Improvement Parks and Recreation Bexar County Stormwater Suburban Cities in priority areas 	 Bexar Regional Watershed Management WTC Homeowners & Neighborhood Associations SA Housing Authority SA 2030 District SA Climate Ready SA Tomorrow Regional Centers 		s •V •V •E •E	to you have concerns about the proposed bioswale in the Brooks center trip? What do you like about the proposed projects? What would you change, if anything? Yo you think these projects are feasible? Yo you know of any funding sources to implement the project or help taintain it if it were constructed? Now would you rank the two projects and why?	
Committed to Safe, Clean, E	njoyable Creeks and Rivers.	13	Ś	Committed to Safe, Clean, Enjoyable Creeks and Rivers.	15

М	ajor Deliverables		SAN ANTONIO
	 Analysis Identify Water Quality High Priority Areas, GIS Data Assessment, GSI Identification & Modeling, Prioritization and Cost Report Stakeholder Engagement Community Workshops, present analysis findings in prioritized areas, include feedback in final report GSI Master Plan Triple Bottom Line (TBL) and Sustainable Return On Investment (SROI) Evaluation and Report, GSI Master Plan Final Report 		RIVER AUTHORITY River AUTHORITY Thank you! megarza@sariverauthority.org www. sariverauthority.org
☆	Committed to Safe, Clean, Enjoyable Creeks and Rivers.	14	Committed to Safe, Clean, Enjoyable Creeks and Rivers.

Appendix K. Workshop 4: City of San Antonio Park and Recreation Meeting on March 31, 2021.

Contract # 90204 - Upper San Antonio River Watershed Protection Plan Implementation -Green Stormwater Infrastructure (GSI) Master Plan

Meeting invitation, agenda, and participant list:

From: Michelle E. Garza Sent: Tuesday, March 23, 2021 11:29 AM To: sandy.jenkins@sanantonio.gov; Grant Ellis (Parks) <<u>Grant.Ellis@sanantonio.gov</u>>; <u>michael.baldwin@sannatonio.gov</u>; <u>bill.pennell@sanantonio.gov</u>; Daniel Leal (Parks) <<u>Daniel.Leal@sanantonio.gov</u>>; Melinda Cerda (Parks) <<u>Melinda.Cerda@sanantonio.gov</u>> Cc: Karen Bishop <<u>kbishop@sariverauthority.org</u>>; Melissa Bryant <<u>mbryant@sariverauthority.org</u>>; Michelle E. Garza <<u>megarza@sariverauthority.org</u>> Subject: SA River Authority GSI Master Plan Project's Parks Results

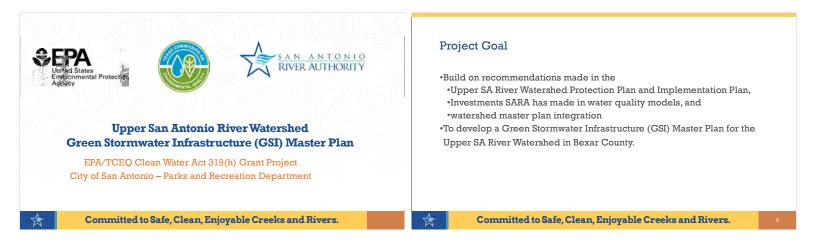
Good afternoon,

The San Antonio River Authority would like to present the Green Stormwater Infrastructure (GSI) Master Plan grant project to your department for feedback. Part of the project modeled GSI in four CoSA Parks: Windsor Park, Lee's Creek Park, Monterrey Park, and Rosedale Park.

Please fill out the straw poll linked below, to find a day and time that works for this group. Feel free to forward to others you would like to invite.

https://strawpoll.com/vg5qq21yg

Attached is an overview of the GSI Master Plan project and parks modeled, if you'd like to review the project prior to the meeting. These are some questions that will be asked about the project's finding/proposal:


- · What are your impression of the proposed GSI BMPs in each site?
- What concerns do you have about each site's GSI BMPs?
- What do you like about these proposed park projects?
- What would you change, if anything?
- How would you rank them in order of implementation and why?
- Do you think these projects are feasible?
- What do you think the community would think about the implementation of GSI BMPs in parks?
- Do you know of any work planned for these parks that GSI could be included in?
- Do you know of any potential funding sources to implement these projects?

Please reach out to me if you have any questions or concerns.

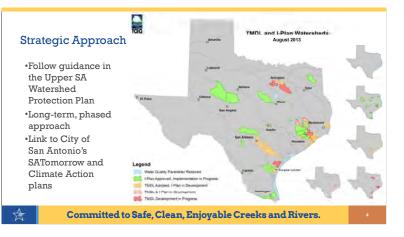
Thank you,

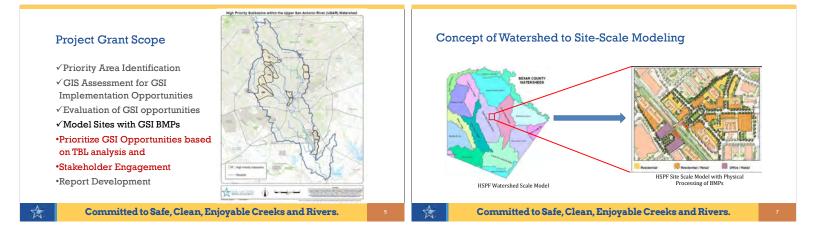
Michelle E. Garza Stormwater Analyst Sustainable Infrastructure Unit O: (210) 302-3265 | C: (210) 859-8867 | <u>megarza@sariverauthority.org</u> 600 E. Euclid Ave. |San Antonio, TX. 78212 | <u>www.sariverauthority.org</u>

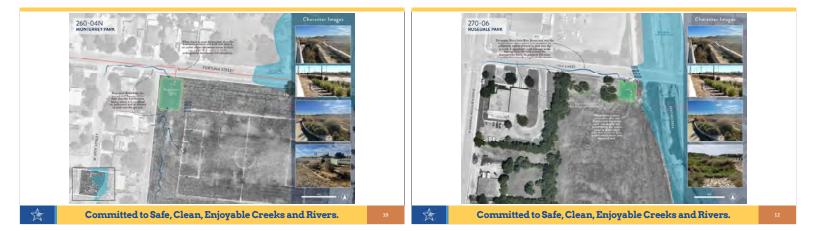
Meeting presentation (next page):

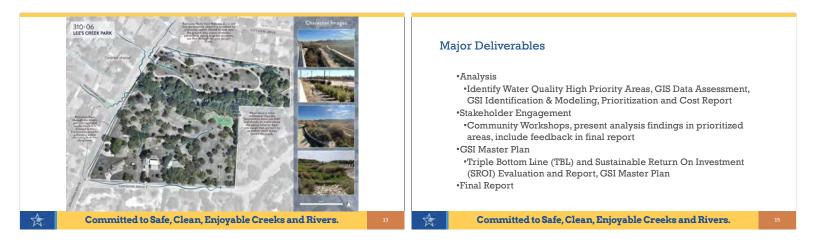
ACKNOWLAGE OF FINANCIAL SUPPORT

PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY


This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement 19-90204 to Texas Commission on Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document.




Committed to Safe, Clean, Enjoyable Creeks and Rivers.



St	takeholder Engagement			What do you think?
۰Ī	The City of San Antonio •Office of Sustainability •Planning & Community Development •Transportation & Capital Improvement •Parks and Recreation Bexar County Stormwater Suburban Cities in priority areas	 Bexar Regional Watershed Management WTC Homeowners & Neighborhood Associations SA Housing Authority SA 2030 District SA Climate Ready SA Tomorrow Regional Centers 		 •What is your impression of the proposed GSI BMPs? •Do you have concerns about the proposed GSI BMPs in each park? •What do you like about the proposed projects? •What would you change, if anything? •Do you think these projects are feasible? •Do you know of any funding sources to implement the project or help maintain it if it were constructed? •How would you rank the projects and why?
\$	Committed to Safe, Clean, E	njoyable Creeks and Rivers.	14	Committed to Safe, Clean, Enjoyable Creeks and Rivers.

1 1

Appendix L. Workshop 5: San Antonio Housing Authority May 4, 2021, meeting details.

Michelle E. Garza

From:	Michelle E. Garza
Sent:	Tuesday, May 4, 2021 11:10 AM
То:	Beth Keel; sylvia_molina@saha.org; michael_lopez@saha.org; wendellyn_miller@saha.org;
	timothy_alcott@saha.org; Melissa Garza; david_casso@saha.org; tristan_tovar@saha.org
Cc:	Michelle E. Garza
Subject:	RE: SAHA - Input Requested on SA River Authority GSI Master Plan's SAHA sites
Attachments:	GSI Master Plan_SAHA_Update_20210504.pdf; Final LID for Developers Brochure.pdf

Thank you for your time today. Please find the presentation I gave on the Green Infrastructure Master Plan grant project attached. I have also included some additional resources we discussed for use in SAHA projects going forward.

Also attached and linked below is the

- LID Developer Brochure that discusses the City's Credit/Offsets
- LID Design Guidance Manual (with O&M guidelines)
 - <u>https://www.sariverauthority.org/sites/default/files/2019-</u>
 <u>08/SARB%20LID%20Technical%20Design%20Manual%202nd%20Edition.pdf</u>
- Sustainability webpage
 - with the Green Infrastructure web map (where you can see rebate and River Authority project details
 <u>https://www.sariverauthority.org/be-river-proud/sustainability</u>
 - o LID Rebate details
 - https://www.sariverauthority.org/be-river-proud/sustainability/rebates

The River Authority's Sustainable Infrastructure Team is available to help with your master planning efforts to include LID/GSI BMPs, review GSI/LID plan sets, help with GSI/LID Rebate applications, and present on topics of interest, etc.

Please reach out to me anytime.

Thank you again,

Michelle E. Garza Stormwater Analyst, Sustainable Infrastructure Unit San Antonio River Authority O: (210) 302-3265 | C: (210) 859-8867 | <u>megarza@sariverauthority.org</u> 600 E. Euclid Ave. |San Antonio, TX. 78212 | <u>www.sariverauthority.org</u>

A Please consider the environment before printing this email

----Original Appointment----From: Michelle E. Garza
Sent: Wednesday, April 21, 2021 12:24 PM
To: Michelle E. Garza; Beth Keel
Cc: sylvia_molina@saha.org; tristan_tovar@saha.org; wendellyn_miller@saha.org; michael_lopez@saha.org; timothy_alcott@saha.org; Melissa Garza; david_casso@saha.org
Subject: SAHA - Input Requested on SA River Authority GSI Master Plan's SAHA sites
When: Tuesday, May 4, 2021 10:00 AM-11:00 AM (UTC-06:00) Central Time (US & Canada).
Where: Microsoft Teams Meeting
Importance: High

Microsoft Teams meeting

Join on your computer or mobile app Click here to join the meeting Learn More | Meeting options

This meeting is to discuss the next phase of the GSI Master Plan Grant the River Authority is working on with grant funding from the US EPA administered by the TCEQ. The piece I would like to present to SAHA relates to Tampico Apartments and another site, we modeled Pin Oak Apartments. I would like to share the results of our work to model water quality improvements, analysis on additional benefits, and concept designs for SAHA's feedback. I have attached my presentation if you would like to review it prior to the meeting.

Below is a summary of the grant project and outline of the virtual meeting/workshop.

The Upper SA River Watershed GSI Master Plan is an EPA/TCEQ Clean Water Act 319(h) Grant Project. The plan builds on recommendations made in the Upper SA River Watershed Protection Plan and Implementation Plan, Investments SARA has made in water quality models, and watershed master plan integration to develop a GSI Master Plan for the Upper SA River Watershed in Bexar County.

The River Authority is implementing this project to model select locations within targeted sub-watersheds to identify opportunities for implementing GSI and then to share outcomes with key stakeholders toward greater understanding of the opportunities, barriers, costs, etc. A priority is being given to space within public rights of way and/or on public lands. As I mentioned, the River Authority identified and modeled four City parks with GSI BMPs. I would like the opportunity to talk with you and other SAHA staff whom you recommend regarding the results and SAHA's thoughts about them.

Stakeholder Workshop Outline:

The purpose is to share the project with property owners and stakeholders (SAHA) to gather feedback and input on the work done to identify and model GSI/LID BMPs on public property as well as implementation potential.

- Overview of the GSI Master Plan EPA 319 Grant Project
- Review GSI opportunities in City parks sites (Tampico Apartments and Pin Oak Apartments)
 - Provide an overview of the site's water quality modeling, triple bottom line (economic, social, and environmental) cost/benefit analysis, and concept-level designs

 Gather feedback on GSI feasibility, funding, and barriers as well as priority of the potential projects

Please reach out to me anytime with questions.

Thank you!

Michelle E. Garza Stormwater Analyst Sustainable Infrastructure Unit San Antonio River Authority <u>210.302.3265</u> <u>megarza@sara-tx.org</u>

What is Green Stormwater Infrastructure (GSI)?

Constructed features that mimic the predevelopment hydrology of the site.

- •Bioretention basins and swales
- •Constructed wetlands •Vegetated filter strips
- •Cisterns
- Cisterns
- •Permeable pavement and pavers •Disconnected downspouts
- •Raingardens

Permeable Pavement

Bioswale Rai

Common Permanent On-site Stormwater BMPs

Bioretention Committed to Safe, Clean, Enjoyable Creeks and Rivers.

6

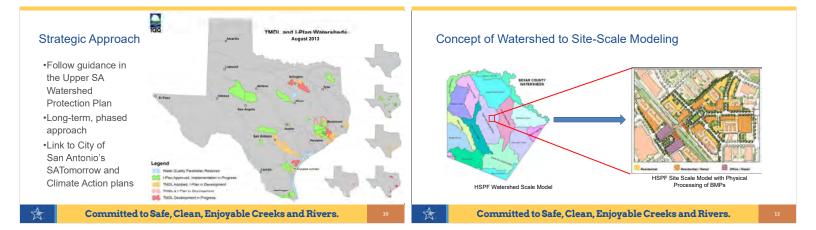
Committed to Safe, Clean, Enjoyable Creeks and Rivers.

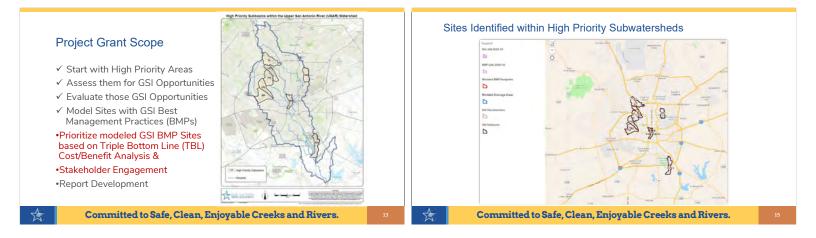
Adding Green Stormwater **Bioretention Basins are designed to:** Infrastructure to a Site •Capture floatable trash and other pollutants •Reduce sediment, bacteria, chemicals •Use slopes and adjacencies to impervious cover •Moderate stormwater temperature •Should be used as an additional •Provide habitat and shade amenity •Alleviate flooding Increased vegetation and shade POLLUTANT REMOVAL DEPTH Pollinator habitat ·Reduced pollutant loads from SURFACE/MULCH parking surfaces, roads, and roofs 1-FOOT TSS PATHOGENS PHOSPHORU 2-FEET NITROGEN 3-FEET THERMAL LOAD 4-FEET Committed to Safe, Clean, Enjoyable Creeks and Rivers. Committed to Safe, Clean, Enjoyable Creeks and Rivers.

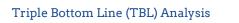
Water Quality Watershed Master Planning

•To date: mostly Qualitative

- •Best Management •To the extent possible/practicable


•303(d)/ Impairments listing based on monitoring data (CRP)


- •Quarterly monitoring temporal gap
- •Limited SWQM station locations spatial gap


•BMPs/LIDs planning:

•Little modeling; the "right kind" of models don't exist. •Build first, then monitor to see effectiveness

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

 Monetizes the benefits and costs of activities in three functions: economic, social, and environmental.
 It will denote a broad array of community benefits (and cost assessment) to GSI and LID designs such as:

•Air Pollution and Carbon Emissions

- •Flood Risk Mitigation
- •Heat Mortality Reduction
- •Water Quality Improvement
- •Water Quantity Impact
- •Recreational Use •Property Uplift •Health Outcomes

•Habitat Value

•Educational Value

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

12

	IVIOD	eled f	low	and	bact	eria	redu	ıctio	n ov	er 4	-yea	ars	
	Table J	-8 2007-2	2010 FI	lows and	d Loads	of Sub	basin 3	30 BMF	Perfor	Dation	Evalua	tion Mo	deling
		1.1.1.1	to BMP	component		-underdaper	1.0	datage-	docam	Inten BMP	- arrived	(Savind on	(based on
	Biorebmaliser N	Fond + Media	(m=4)) -0.64945	(ar H) 6.6945	6an Ay 0.0254	(m:10) 5.4214	(milt) 1.8527	(m.h) 0.0000-	Gec-hg 0.0000	(4-11) - 4.40%	(= 10	RMP without	Inter-move
Boreterition N	Elionetheration N	Fond + Media Understation	0.8845	5.4214	0.0254	5.4714	3.4412	0.0000	0.0000	4.6429	2,0016	29,991	15,9%
	Represention 5	Fond + Media	5.9117	5.9117	0.0195	4.8080	1.0841	0.0000	0.0000	5.9818	0.5254	8.9%	4.25
	and the second s	Understam											
				4.8080	0.5040		4.2977	0.0000	0.16364				· · · · · · · · · · · · · · · · · · ·
	Total	total rainfall (ri) disinage area (oc)	12.6004 131.814 2.144		0.5040	-	4.2977	0.0000	0.0064	30.0742	2,5250		20.0%
	Total SACT SACP	total randall (ri) drainage area (ac) yecal runoff coeff Components				Bow to	4.2977 Overflow			0utflow	2.5250	Stantoved	30.005
	toral o BACT BMP	total rainfall [in] diainago area (ac) yacali nanolt coeff	131.354 2.144 0.527 Inflow to BMP	Inflow to component	Decay	underlayer	Overflow	Start Storige	0.0064 End storage	Outflow from BMP	2.5250	N removed (based or	
		total randall (n) diainage area (ac) yecal runolt coeff Components	131.354 2.144 0.527 Inflow to BMP (10%6)	inflow to component (10%)	0.6604 Decay (10%)	underlayer (2016)	Overflow (10%6)	GLODOD Start	0.0064	Outflow from BMP (10%6)	Load rempsed (10%)	jitused on BMP inflow	% removed (based on torial inflow)
	Total o BACT gMP Biordention N	total ravial (in) disinago area (ac) yecal runolt coeff Components Pond + Media	131.354 2.144 0.527 Inflow to BMP	Inflow to component. (10%) 3,048,819	0.6604 Decay (10°6) 392548	underlayer (20%6) 2,413,604	Overflow (10*6) 242,462	Start Storage (10%) 0	0.0064 End storage	Outflow from BMP	10ad yempored (10%) 1,889,017	N ramoved (based on BMP inflow 62.DN	% removed
	Bioretention N	total randali (m) diainago area (ac) yecali ranolit coeff Components Pond + Media Underdram	131.354 2.184 0.527 biflow to BAP (10*6) 3.048.619	Inflow to comporent (10%) 3048,619 2,413,604	Decay (12)*6) 302,548 875,752	underlayer (10%6) 2,413,604 830,706	Overflow (10*6) 242,462 917,140	Start Storige	0.0064 End storage	Outflow from BMP (10%6) 1,159,602	Load versased (10%) L#89,017	(based on BMP inflow 62.0%	% removed (Seried on Local inflow) 33.7%
		total ravial (in) disinago area (ac) yecal runolt coeff Components Pond + Media	131.354 2.144 0.527 Inflow to BMP (10%6)	Inflow to component. (10%) 3,048,819	0.6604 Decay (10°6) 392548	underlayer (20%6) 2,413,604	Overflow (10*6) 242,462	Start Storage (10%) 0	0.0064 End storage	Outflow from BMP (10%6)	Load rempsed (10%)	(based on BMP inflow 62.0%	% removed (based on torial inflow)

1.1

A CLARENCE AND
O O

BMP	Components	(nlices)	Inflow to	Deciny	Flow to	Overflow	Start	Erel	Outflow	Load	% removed	% memory
		10 5549	comparent		underlayer		storage	thorage-	Iron 8A82	mmoved	(hased on	(based a
		(fix)	(20x)	(0x)	(fox)	(lbs.)	(0x)	(25x)	(Red)	(los)	MMF indiow)	total left
Bioextention N	Fond + Media	6.0617	6.0617	0.7206	4.4392	0.9029	12.00002	0.0000	1.8925	3.1693	52.3%	27.8%
	Underdrain		4.4192	1.3820	1.0666	1.9905	0.0003	0.0000				
Biovetention 5	Fond + Merlia	5.3521	5.3521	0.6471	3.9267	0.7763	0.0000	0.0000	3.1418	2,2090	41.7%	19.4%
	Underdrain		3.9267	1.5618	1	2.3635	0.0000	0.0014			10000	
Total	1 1	11.4139	1	4.3136			0.0000	0.0014	6.0147	5.3783	1	47.1%
NOSN												
EMP-	Components	Inflow	inflowtp	Decare	How to	Overflow	Start	End	Clutflow	Load	% serviced	% remov
		TO BARP	comparent		underlaper		storage	storage	From BARF	recovered	(bused on	Ousede
		(Red)	(Rin)	(6e)	(fini)	(Res)	(the)	(254)	(iller)	(Red)	EMP inflow	total kells
dioretention N	Fond+Media	9,7032	9.2031	0.8482	7,7061	1.1488	\$1,00002	0.0000	4.6074	5.0957	52.5%	27.9%
	Understrain		7,7061	1.9875	2.2599	3.4546	0.000	0.0000				
Bioretection 5	Fond + Media	8.5689	8.5689	0.7621	6.8195	0.9803	0.0006	0.0000	5.1887	3.3738	29,4%	18.5%
	Underdhain -		6.8395	2.6115		4.2014	0.0000	0.0064		1.	1.111	
Total -		18.2720	1 1	6.2094	1		0.0000	0.0064	9.7961	8,4595	3	46.4%
ORCP												
HMP-	Components	inflow	Inforto	Decay	Flow to:	Overflow	Start	Fod	Garflow	Load	% removed	Krance
	Components	inflow to SMP	inflow to	Decay	Flow to undertager	Overflow	Start.		Cutflow Itom SMP	Load	% removed (based on	
	Components		inflow to component (bu)	Decay	Flow to underlayer (Dol)	Overflow	Start storage Ral	End Joor age (Pbs)		Load removed fibil		(based)
	-Components Fond - Mertia	to BMP	component		underlayer		stonage	Attraction	from 8MP	[encound]	[based on	(based) totali-m
UMP-		no BMBP (Bbil	component (7bs)	(154)	underlayer (los)	(84)	storage [Rn]	(Bs)	from SMP (Bn)	bevores jedj	(based on (MD) inflow)	(based) totali-th
UMP-	Fond + Media	no BMBP (Bbil	(bs) (bs) 1.8292	(154) 0.0999	(Da) 3.4934	(ibs) (863,0	itosage (ba) 0.0000	1857 alge (754) 0.0000	from SMP (Bn)	bevores jedj	(based on (MD) inflow)	(based a total infl 28.4%
UMP Bicentention N	Fond + Mettia Underdrait	to 6M9/ [Bu] 1.8292	component (bs) 1.8292 1.4914	(154) 0.0999 0.4225	undertayer (los) 3.4914 1.5267	(8x) 0.2380 1.54/2	storage (bs) 0.0000 0.0000	1807 age (754) 0.0000 0.0000	(Ibn) (Ibn) 1.7802	removed fibsi 2.0690	(based on (BMF) inflow) 53.5%	(based a total infl 28.4%
UMP Bicentention N	Fond + Metlia Underdram Fond + Metlia	to 6M9/ [Bu] 1.8292	component (ba) 1.8293 1.4934 3.3792	(154) 0.0999 0.4225 0.1896	undertayer (los) 3.4914 1.5267	(Ba) 0.2380 1.54/2 0.2011	storage [Ba] 0.0000 0.0000 0.0000	(807 age (254) 0.0000 0.0000 0.0000	(Ibn) (Ibn) 1.7802	removed fibsi 2.0690	(based on (BMF) inflow) 53.5%	(based)
BAP BasitestianN BioestensionS	Fond + Metlia Underdram Fond + Metlia	to BMP Jbal 1.8212 3.3792	component (ba) 1.8293 1.4934 3.3792	(154) 0.0999 0.4225 0.0896 1.0195	undertayer (los) 3.4914 1.5267	(Ba) 0.2380 1.54/2 0.2011	storage Bal 6.0000 0.0000 0.0000 0.0000	1807 age (754) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMBF (Ba) 1.7802 2.2573	removed Bail 2.0490 1.1092	(based on (BMF) inflow) 53.5%	(based- total)-# 28.45 15.45
BMP Bioretention N Bioretention S Total ORTHOP	Fond + Metlia Underdram Fond + Metlia	to BMP Jbal 1.8212 3.3792	component (ba) 1.8293 1.4934 3.3792	(154) 0.0999 0.4225 0.0896 1.0195	undertayer (los) 3.4914 1.5267	(Ba) 0.2380 1.54/2 0.2011	storage Bal 6.0000 0.0000 0.0000 0.0000	1807 age (754) 0.0000 0.0000 0.0000 0.0000 0.0000	from BMBF (Ba) 1.7802 2.2573	removed Bail 2.0490 1.1092	(based on (BMF) inflow) 53.5%	(based a total 3-46 28.4% 15.4% 43.8%
UMP Biostention N Biostention S Total	Fond + Metlia Underdram Pront + Meilia Underdram	to 6549 (Bul 1.8292 3.3792 7.2084	component (ba) 1.8293 1.4914 3.3792 3.0885	(54) 0.0999 0.4225 0.0896 1.0195 1.6314	underSeyer (Boi) 3.4934 1.5267 3.0885	//bc] 0.2380 1.5402 0.2011 2.0562	slosage (bs) 0.0005 0.0005 0.0000 0.0000 0.0000 0.0000	1007 age (254) 0.0000 0.0000 0.0000 0.0127 0.0127	100m 8848 (Be) 1.7802 2.2573 4.0375	1092 11582	(based on EMD inflow) 51.5% 32.8%	(based o total 1-46 28.4% 15.4% 43.8%
BMP Bioretention N Bioretention S Total ORTHOP	Fond + Metlia Underdram Pront + Meilia Underdram	to 6MP Bbil 18212 33732 7,2084 10flow	component (ba) 1.8292 1.4934 3.3792 3.0885	(54) 0.0999 0.4225 0.0896 1.0195 1.6314	Indet Sayer (Doi) 3.4934 1.5267 3.0885	//bc] 0.2380 1.5402 0.2011 2.0562	Itorage [ba] 0.0000 10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100 rage (354) 0.0000 0.0000 0.0127 0.0127 0.0127 Cnd	Itom BMIP (Be) 1.7802 2.2573 4.0375 Outflow	removed (bai) 2.0490 1.1092 1.1582 Load	(based on EME inflow) 51.5% 32.8%	(based of total 1-th 28.4% 43.8% % ramew (based of
BMP Bioretention N Bioretention S Total ORTHOP	Fond + Metlia Underdram Pront + Meilia Underdram	to 5MP (Bbi) 1.8232 3.3732 7.2084 Inflow to 5MP	Component (ba) 1.8292 1.4914 3.3792 3.0885	(54) 0.0999 0.4225 0.0996 1.0195 1.6314 Decay	underlayer (Bal) 3.4914 1.5267 3.0885 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Bo) 0.2380 1.5422 0.2031 2.0562 Oyerflow	Itorage Itol 0.0000 0.0000 0.0000 0.0000 0.0000 Start storage	100 rage (294) 0.0000 0.0000 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127	Itom 8M8 (8%) 1.7802 2.2573 4.0375 Outflow from 6MP	removed Boil 2.0490 1.1092 3.1582 Load removed	(based on BMD inflow) 51.5% 32.8% 32.8%	(based o total infli 28.4% 15.4% 43.8% (based o total infli
UMP Bioretention N Bioretention S Total ORTHOP EMP	Fond + Media Underdram Prost + Media Underdram Underdram	10 5MP (Bbi) 1.8292 3.3732 7.2084 10/low 10 5MP (Bbi)	component (bbs) 1.8291 1.4934 3.3885 1nflow to component (bbs)	(54) 0.0999 0.4225 0.1896 1.0195 1.6314 Decay (8b)	Inderlayer Boal 3.4934 1.5267 3.0885 3.0885 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	(Bo) 0.2380 1.5422 0.2031 2.0562 Qyerffow (Biv)	storage [Da] 0.0000 0.0000 0.0000 0.0000 0.0000 5.000 Start storage [En]	100 rage (2%) 0.0000 0.0000 0.0127	Inom BMB (Be) 1.7802 2.2573 4.0375 Dutflow from BMB (Bh)	removed (bil) 2.0490 1.1092 3.1582 Load removed [bij]	(based on 1945) inflow) 51.5% 32.8% 32.8% 32.8% 51.5% 32.8%	(based) total infl 28.45 43.85 43.85 (based) total infl
UMP Bioretention N Bioretention S Total ORTHOP EMP	Fond + Media Underdram Pond + Media Underdräm Components Fond + Media	10 5MP (Bbi) 1.8292 3.3732 7.2084 10/low 10 5MP (Bbi)	Component. (Doc) 1.82592 1.4934 3.37592 3.0885 1.0504 0.05050 (En) (En) 1.5254	(Ba) 0.0999 0.4225 0.0896 1.0195 1.6334 Decay (Ba) 0.0805	protecturyer (Doi) 3.4934 1.5267 3.0885 	(Bo) 0.2380 1.5422 0.2011 2.0562 0.yerfflow (Bo) 0.0972	Itonage Iba) 6.0000 0.0000 0.0000 0.0000 5.000 5.000 5.000 1.0000 1.0000	100 rage (2%) 0.0000 0.0000 0.0000 0.0127 0.0127 Cnd storage (5%) 0.0000	Inom BMB (Be) 1.7802 2.2573 4.0375 Dutflow from BMB (Bh)	removed (bil) 2.0490 1.1092 3.1582 Load removed [bij]	(based on 1945) inflow) 51.5% 32.8% 32.8% 32.8% 51.5% 32.8%	(based o total 3-85 28.4% 43.8% 43.8% (based o total 3-95 28.3%
BMP Bioestention N Bioestention S Total ORTHOP BMP Bioestention N	Fond + Mertla Boderdram Pond + Mertla Underdram Components Fond + Mertla Underdram	to 8MP (Bal 1.8292 3.3792 7.2084 1.000w to 8MP (Bal) 1.5294	component (bbs) 1.8293 1.4934 3.3792 3.0885 1nflow to component (bbs) 1.5294 1.7923	(84) 0.0999 0.4225 0.0896 1.0195 1.6314 Decay (86) 0.0401 0.1678	Inder Layer Dial 3.4914 1.5267 3.0885 Inder Layer Inder Layer I	(Bbc) 0.2380 1.5422 0.2011 2.0562 Oyerfflow (Bbs) 0.0972 0.6166	storage Bbi 0.0000 0.0000 0.0000 0.0000 0.0000 5tart storage (Ba) 0.0000 0.0000	100 rage (2%) 0.0000 0.0000 0.0227 0.0127 0.0127 Cnd storage (2%) 0.0000 0.0000	Ibni 2MP IBni 1.7802 2.2573 4.0375 Outflow Iron 8MP (Bb) 0.7139	removed Bog 2.0590 11092 3.1582 Load removed Bog 0.8155	(based on BME inflow) 51.5% 32.8% 32.8% (based on BME inflow 51.1%	(based of total 1-th 28.4% 43.8% % ramew (based of

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

~

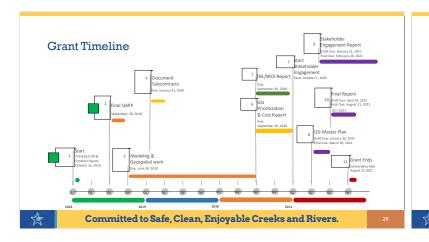


Table K	-9 2007-	2010 F													11-1-1			TREE CARE CONTRACTOR
		20101	lows and	d Loads	of Sub	basin 42	20 BMP	Perfor	mance	Evaluat	ion Mo	deling						A. AND
AND	Components	kiflow	Infline to	[wosition	Row to	Guerflow	Met	Tid	Guttoe	llow	Witerratured.	the microgrammed [3			1// 10	Contraction of the
		to ANP	tomporent.		and interest		ALIMADE	Horage	from \$548	renound	(based or -	(Trapping see	-	10 m	a carry of the state		7/////	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE
		(ac-ft) 3.8156	[44-12]	Uac-tt) 0.0149	(ac-ft). 3 1883	(ac-lt) 0.6127	(#-R) 0.000.0	(ac-tt) 0.0000	(ac-8) 1.8959	140-111	MP trillow)			100		the sold	111 Maria	AND A DECK OF A DECK
invetention W	Povid + Media	3.8158	3.8158		3 1383				1.9959	0.4087	10.7%	3.9%.					11002	
	Underskaar		3.1683	0.2558		7632	6.0000	0.0112						HICODRIAN			1.000	A Design of the Association of t
ionetention 5	Pond + Media	6.6937	6.6937	0.0212	5.0940	1.5784	0.0000	0.0000	6.1429	0.5345	105	5.1%						The same of the part was
	Underdrain		\$.0940	0.5133		4.5645	0.0000	0.0362						El I			water Based Lann sha	A DESCRIPTION OF THE REAL
fatal		10.5095	-	0.9432		<u> </u>	0.0000	0.0074	9.5388	0.9432		9.0%				The second second	restar Roos from the op and parking lat and he bioretextion hadro.	
	testal careful fini	112.27																l Cebes
																and the second second	they bear to have a se	and the second se
1.19	dialeuge urea (ac)	2.03	4												10 1 17	1///3	rants and/or allowed to ak into the ground	The statement of the
		2.03	4										100		1-11/	V//7	all into the plant	the
	dialeuge urea (ac)	2.03	4												the second	¥///	at the proof	Traine
MCT	dialeuge urea (ac)	2.03	4	Decay	flow to	Overflow	Start	Ind	Outflow	lost	% received	No memory used		AC	de la	7///	1.63	Tem
MCT	dalrage unea (ac) enaă runa!! (ce!!	2,01 0.55	4	Decay		Overflow	Start		Outflow Iron BMP	Load removed		% respond				These there is more than a	1403	Keins
ACT	dalrage unea (ac) enaă runa!! (ce!!	2,01 0.55	4 8 Inflowto	Decay (20146)	Row to underlayer (10*6)	Overflow (10*6)		End storage (30%)			(based on			Sector Sector	sintan neginean	Justine server they		Kin
ACT RMD	dalrage unea (ac) enaă runa!! (ce!!	2,01 0.55 Inflow to 658	4 8 Inflow to component		underlager	Overflow (10*6) 58,776	storage	storage	from BMP	removed	(based on	(based on		A light of the local sector	Annual Registered	Justine server they		TON
ACT RMD	disinge unu (ac) erall r <i>unull</i> coell Components	2,01 0.55 to 858 (10%)	4 8 component (10%) 2,254,051	(20*6)	underlager (10*6)	(10*6) 58,776	storage	storage (30%)	(10*6)	removed (10*6)	(based on BMP inflow)	(based on otal inflow)		(These there is more than a		100 March
ALCT BMP Routhention W	dalrage una (ac) erail rarall coeff Composents Pond + Media Underdrain	2,01 0,55 1s/low to 65/9 (10%) 2,254,081	4 8 component (10%6) 2,254,051 1,930,367	(30*6) 264,930 961,638	underlager (10*6) 1,930,367	(10*6) 58,776 968,517	storage	storage (30%) 0	from BMP (10*6) 1,027.293	removed (10%5) 1,226,747	(based on BMP inflow) 1 54.8%	(harved on ottai inflowi) 19.8%				Justine server they		
MCT BMD	dalrage una (ac) erail rand/ ccel/ Componenta Pond + Media	2,01 0.55 to 858 (10%)	4 8 component (10%) 2,254,051	(10*6) 266,910 961,638 585,217	underlager (10*6)	(10*6) 58,776	storage	storage (30%6) 0 11	(10*6)	removed (10*6)	(based on BMP inflow)	(based on otal inflow)		(Justine server they		10m

ONGN												
EMP	Longometta	1 MP	Comprised	3kor	Tice to orderinger	Sarba -	Wart .	denage.	-Cuttion Intel Mill	renipsed	Grantied (brief)	
		1 104	104	1.104	1.00	-thei	- the	- max	1944	104	ARE LOCATED	and a lot of a
Nontestanil	Proti - Mattia	1,7301		0.1554	7.4238	. 1 Milt .	-8.0000	6.0001	4 9907	1718A	33.3%	-12.8%
	Linderstater .		3.4250	2.5780		4.881	8,0000	0.0008		1.1	1.000	1.000
Bioreterrition 5	Proti - Mattin	13.5417	13 5415	0.5647	12-4004	0.7474	-5.0000	0.0000	5:40'05	4,7852	30.781	151%
	Under draim'		12.4036	1.6521		A 1061	8/9000	0.0088				
Titte	1	21.170	1	6.95			0.000	0.00417	18.8585	6.1627		20.0%
			-									
RHON .												
1. 'BMP'	Companyer (1)	affine	Liffing by	2min	Permitt.	Carfini	Mart	drei.	Outline.	irent.	Kenned	Same
		1 64 BAR	Companient		underlayer		inninge	sinty.	Annual Date:	Income	- (Longel Co.)	Strend to
		Dist.	Plat	104	104	albed 1	The	Tel	Bal	. 194	State Labor	beer and
Statement D	Post - Martin	3.6049	3.8049	0.4382	2.7756	20.4551	8.0000	0 0000	3.78602	1.4148	44.275	26.75
	Indertants		2 7716	1.1555		1 6751	0.0000	0.0000			1.00	
Scontantine 1	Wanted + Wilson	6.3249	6.1246	0.8425	0.3775	1.0399	8.0000	0.0000	3.7728	23538	10 ft.	25.7%
	Inderstant.		4.3771	5.70365		2 6482	0.0000	0 1000				
Trail.	-	0.0712		4.1175			0.0000	0.0001	3-7612	4.075	-	67.7%
1.000					-				1 3.110		-	-
NOR												
8447	I timement I	and the second	infine to	Acres 1	i from	Darfue	Burt	- Dot	D Dorthon	- Joseff	(Accession)	Simo
		10 54.0	component		underlager		storage	increase.	Among DARFY.	iscound	(Dened or	(build o
		and .	1011	1.064	and .	61	100	and .	. dial	201	and interest	
Rossierier II.	Prost - Mettin	8.9237	8-0117	0.4997	5.0626	0.4614	0.0000	0.0000	3,3558	7.4715	41.78	13.000
	Conduction .		a partie	2.1120		2.9354	0.0000	0.0000				
Distatements	Prost - Mettin	10.5365	03.5365	1.0530	8.4302	1.1511	0.0000	0.0000	6.4501	8.6760	91.00	24.84
	Indental.	mane	6.1952	3.0530	1100	6.1756	10.0000	0.0004	0.000			1000
Tinul.		141.5402		4.1124			-5.0000	0.0006	8.6225	6.2177	-	ALC: 1
					-				- energy	1		-
ORGP .												
	Compression of	aller.	and the second	Dellar	Don'th	Detter	Bat	2.4	Ducham 1	3444	1. Areannes	11.000
		to BMP	Complement.		-anderlane		-Monage-	diria.	Ameri BARF.	impost	Barmed Art.	figured to
		2440	-(%c)	194	ine.	1912	Pro .	1.00			and solves	
Burtlenter W.	Post-Mela	2.4288	-2.4388	0.0548	2.6228	6.Dest	2,000	0.0000	1.5345	2.4114	36.7%	11.00
	Companying of		2.8228	0.8340		3,4964	4.0000	0.0035				1.000
dispersion 1	Post - Mellar	4.2519	4,2529	0.1104	3,8777	0.34N	2,0000	0.0000	2.8138	LAMA	21.44	72.04
and a state of the	Contention		3,000	1.2021	- advir	3,4753	4.0000	0.0041		1.100		1.000
Trital	-	84437	1	1.2175	_		-5-0000	0.0044	1445	1.2124	_	11.75
11mm				-410		-		0.000	1.4481	1.000		1 11/10
ORTHOP												
200P	Zanganests	tilles'	Individual I	Belev	forts'	. Durflew	- Bart	En4	Duttion	Same .	-	1 th instance
		TO BAP	Companyed	1404	unkelayee		diage	CITAR	Ameri Mart	ampant	-Daniel tor	
		The Date	- Dad	104	1962	- Perl	200	- Dec	- the	- Peri	ANT LOT	
BORREROOM IN	Proof - Mettin	0.9675	63675	-A4124	0.5252	2,0563	-5/000	0.0000	3.6823		4.75	
DORMOON B	Photo - Metta	0.9638	1.3/81	2.6325	0.5262	0.093	-5.0000	0.0000		-0.9950	36.7%	11,79
and the second second		1 2043		0.0009					1.1518	Arest	1.00	10.00
disenses 5	Progi v Mettia	1 2963	3.2063	.0.4384	1.563	5.32M	-5.0000	0.0005	3.1225	6.5.826	81.2%	15.95
-	Underskain'.	14042		1.4386	-	3.0887	-2.0000	0.0017	-3.7842		-	
THEFT												112.2%

Stakeholder Engagement •The City of San Antonio •Bexar Regional Watershed •Office of Sustainability Management WTC •Planning & Community •Homeowners & Neighborhood Development Associations Transportation & Capital •SA Housing Authority Improvement (Public Works), •SA 2030 District •Parks and Recreation •SA Climate Ready •Bexar County Stormwater •SA Tomorrow Regional Centers •Suburban Cities in priority areas 金

What are your thoughts?

•What is your impression of the process to find targeted GSI opportunities?

 ${\scriptstyle \bullet}$ What are your thoughts on the proposed GSI BMP sites?

•Do you have concerns about any of the projects?

•What do you like about the proposed projects?

• What would you change, if anything?

•Do you think any of the projects are feasible?

 ${}^{\bullet}\textsc{Do}$ you know of any funding sources to implement any of them or help maintain them if constructed?

How would you rank these projects?

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

Major Deliverables

•Analysis

•Identify Water Quality High Priority Areas, GIS Data Assessment, GSI Identification & Modeling, Prioritization and Cost Report

•Stakeholder Engagement

•Community Workshops, present analysis findings in prioritized areas, include feedback in final report

•GSI Master Plan

•Triple Bottom Line (TBL) and Sustainable Return On Investment (SROI) Evaluation and Report, GSI Master Plan

•Final Report

GSI Master Plan: Upper SA River Watershed

•This project builds off the Upper San Antonio River Watershed Protection Plan (WPP) by developing a master plan for the use of green stormwater infrastructure (GSI) that incorporates stakeholder input to develop common goals and investment priorities for implementing GSI. Building on the River Authority's watershed scale models, sub-basin areas with high potential pollutant loads will be analyzed for sites that have the highest potential for GSI implementation effectiveness. For the recommended sites, the River Authority will develop site-scale models, concept-level designs, and Triple Bottom Line (social, environmental, economic) cost benefits estimates. The GSI Master Plan will include a recommended schedule of implementation, addressing the stakeholder process, costs, funding considerations, and the overall evaluation and prioritization process.

Committed to Safe, Clean, Enjoyable Creeks and Rivers.

3